    # Cara menggunakan quadratic program python

 Given a quadratic equation the task is solve the equation or find out the roots of the equation. Standard form of quadratic equation is –```ax2 + bx + c where, a, b, and c are coefficient and real numbers and also a ≠ 0. If a is equal to 0 that equation is not valid quadratic equation. ``` Examples:```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```Method 1: Using the direct formulaUsing the below quadratic formula we can find the root of the quadratic equation. There are following important cases.```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4````# Python program to find roots of quadratic equation``import` `math ` ` ` ` ` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```0```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```1 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```2` ` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```5```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```7```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```3 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```5```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```7```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```9```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```real and different roots 2.0 -12.0 ```1```real and different roots 2.0 -12.0 ```2```real and different roots 2.0 -12.0 ```3```real and different roots 2.0 -12.0 ```4 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4```real and different roots 2.0 -12.0 ```6```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4```real and different roots 2.0 -12.0 ```8 ```real and different roots 2.0 -12.0 ```9```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```0```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```1```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```5```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```6```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```9```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9`# Python program to find roots of quadratic equation`2 `# Python program to find roots of quadratic equation`3`# Python program to find roots of quadratic equation`4```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 `# Python program to find roots of quadratic equation`8```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```9```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2 `# Python program to find roots of quadratic equation`3`# Python program to find roots of quadratic equation`4```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 `# Python program to find roots of quadratic equation`8```real and different roots 2.0 -12.0 ```4 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4`math `3 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```7```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```0```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```1 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4` `2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```6```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9`# Python program to find roots of quadratic equation`4 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 `# Python program to find roots of quadratic equation`8```real and different roots 2.0 -12.0 ```4 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4` `6```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4` `8` `9```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```03```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```6```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9`# Python program to find roots of quadratic equation`4 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```14```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```15```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```16```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9`# Python program to find roots of quadratic equation`4 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```14```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```27```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```16` ` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```30```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```5```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```33```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```36```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```37```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```40` ` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```42```real and different roots 2.0 -12.0 ```8 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```5```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```0```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```1 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```2```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```3```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```52```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```6` ` ` `8` `9```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```4```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```58Output:```real and different roots 2.0 -12.0 ```Method 2: Using the complex math moduleFirst, we have to calculate the discriminant and then find two solution of quadratic equation using cmath module. ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```59`import` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```61` ` ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```5```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```33```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```3```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```37```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 `# Python program to find roots of quadratic equation`6` ` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```73```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```7```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```76```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0`# Python program to find roots of quadratic equation`6```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```80```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```3 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```5```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```87` ` ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```89```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```90```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```96`# Python program to find roots of quadratic equation`4```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```01```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```02```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```8 ```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```2```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```9`# Python program to find roots of quadratic equation`2 ```Input :a = 1, b = 2, c = 1 Output : Roots are real and same -1.0 Input :a = 2, b = 2, c = 1 Output : Roots are complex -0.5 + i 2.0 -0.5 - i 2.0 Input :a = 1, b = 10, c = -24 Output : Roots are real and different 2.0 -12.0 ```96`# Python program to find roots of quadratic equation`4```The roots are (-3.414213562373095+0j) (-0.5857864376269049+0j) ```4`# Python program to find roots of quadratic equation`6 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```0 ```If b*b < 4*a*c, then roots are complex (not real). For example roots of x2 + x + 1, roots are -0.5 + i1.73205 and -0.5 - i1.73205 If b*b == 4*a*c, then roots are real and both roots are same. For example, roots of x2 - 2x + 1 are 1 and 1 If b*b > 4*a*c, then roots are real and different. For example, roots of x2 - 7x - 12 are 3 and 4```01 