Elif Python

Besides the statement just introduced, Python uses the usual flow control statements known from other languages, with some twists.

Show

4.1. >>> a = ['Mary', 'had', 'a', 'little', 'lamb'] >>> for i in range(len(a)): ... print(i, a[i]) ... 0 Mary 1 had 2 a 3 little 4 lamb 7 Statements

Perhaps the most well-known statement type is the statement. For example:

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
...     x = 0
...     print('Negative changed to zero')
... elif x == 0:
...     print('Zero')
... elif x == 1:
...     print('Single')
... else:
...     print('More')
...
More

There can be zero or more parts, and the part is optional. The keyword ‘

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
9’ is short for ‘else if’, and is useful to avoid excessive indentation. An
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
7 …
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
9 …
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
9 … sequence is a substitute for the
>>> range(10)
range(0, 10)
5 or
>>> range(10)
range(0, 10)
6 statements found in other languages.

If you’re comparing the same value to several constants, or checking for specific types or attributes, you may also find the

>>> range(10)
range(0, 10)
7 statement useful. For more details see .

4.2. >>> range(10) range(0, 10) 8 Statements

The statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and halting condition (as C), Python’s

>>> range(10)
range(0, 10)
8 statement iterates over the items of any sequence (a list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12

Code that modifies a collection while iterating over that same collection can be tricky to get right. Instead, it is usually more straight-forward to loop over a copy of the collection or to create a new collection:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status

4.3. The Function

If you do need to iterate over a sequence of numbers, the built-in function comes in handy. It generates arithmetic progressions:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4

The given end point is never part of the generated sequence;

>>> sum(range(4))  # 0 + 1 + 2 + 3
6
3 generates 10 values, the legal indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the ‘step’):

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine and as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the function, see .

A strange thing happens if you just print a range:

>>> range(10)
range(0, 10)

In many ways the object returned by behaves as if it is a list, but in fact it isn’t. It is an object which returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving space.

We say such an object is , that is, suitable as a target for functions and constructs that expect something from which they can obtain successive items until the supply is exhausted. We have seen that the statement is such a construct, while an example of a function that takes an iterable is :

>>> sum(range(4))  # 0 + 1 + 2 + 3
6

Later we will see more functions that return iterables and take iterables as arguments. In chapter , we will discuss in more detail about .

4.4. >>> for n in range(2, 10): ... for x in range(2, n): ... if n % x == 0: ... print(n, 'equals', x, '*', n//x) ... break ... else: ... # loop fell through without finding a factor ... print(n, 'is a prime number') ... 2 is a prime number 3 is a prime number 4 equals 2 * 2 5 is a prime number 6 equals 2 * 3 7 is a prime number 8 equals 2 * 4 9 equals 3 * 3 1 and >>> for n in range(2, 10): ... for x in range(2, n): ... if n % x == 0: ... print(n, 'equals', x, '*', n//x) ... break ... else: ... # loop fell through without finding a factor ... print(n, 'is a prime number') ... 2 is a prime number 3 is a prime number 4 equals 2 * 2 5 is a prime number 6 equals 2 * 3 7 is a prime number 8 equals 2 * 4 9 equals 3 * 3 2 Statements, and >>> range(10) range(0, 10) 0 Clauses on Loops

The statement, like in C, breaks out of the innermost enclosing or loop.

Loop statements may have an

>>> range(10)
range(0, 10)
0 clause; it is executed when the loop terminates through exhaustion of the iterable (with ) or when the condition becomes false (with ), but not when the loop is terminated by a statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
...     for x in range(2, n):
...         if n % x == 0:
...             print(n, 'equals', x, '*', n//x)
...             break
...     else:
...         # loop fell through without finding a factor
...         print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

(Yes, this is the correct code. Look closely: the

>>> range(10)
range(0, 10)
0 clause belongs to the loop, not the statement.)

When used with a loop, the

>>> range(10)
range(0, 10)
0 clause has more in common with the
>>> range(10)
range(0, 10)
0 clause of a statement than it does with that of statements: a statement’s
>>> range(10)
range(0, 10)
0 clause runs when no exception occurs, and a loop’s
>>> range(10)
range(0, 10)
0 clause runs when no
>>> for n in range(2, 10):
...     for x in range(2, n):
...         if n % x == 0:
...             print(n, 'equals', x, '*', n//x)
...             break
...     else:
...         # loop fell through without finding a factor
...         print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
1 occurs. For more on the
>>> for num in range(2, 10):
...     if num % 2 == 0:
...         print("Found an even number", num)
...         continue
...     print("Found an odd number", num)
...
Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9
6 statement and exceptions, see .

The statement, also borrowed from C, continues with the next iteration of the loop:

>>> for num in range(2, 10):
...     if num % 2 == 0:
...         print("Found an even number", num)
...         continue
...     print("Found an odd number", num)
...
Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

4.5. >>> # Measure some strings: ... words = ['cat', 'window', 'defenestrate'] >>> for w in words: ... print(w, len(w)) ... cat 3 window 6 defenestrate 12 04 Statements

The statement does nothing. It can be used when a statement is required syntactically but the program requires no action. For example:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
0

This is commonly used for creating minimal classes:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
1

Another place can be used is as a place-holder for a function or conditional body when you are working on new code, allowing you to keep thinking at a more abstract level. The

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
04 is silently ignored:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
2

4.6. >>> range(10) range(0, 10) 7 Statements

A statement takes an expression and compares its value to successive patterns given as one or more case blocks. This is superficially similar to a switch statement in C, Java or JavaScript (and many other languages), but it’s more similar to pattern matching in languages like Rust or Haskell. Only the first pattern that matches gets executed and it can also extract components (sequence elements or object attributes) from the value into variables.

The simplest form compares a subject value against one or more literals:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
3

Note the last block: the “variable name”

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
10 acts as a wildcard and never fails to match. If no case matches, none of the branches is executed.

You can combine several literals in a single pattern using

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
11 (“or”):

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
4

Patterns can look like unpacking assignments, and can be used to bind variables:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
5

Study that one carefully! The first pattern has two literals, and can be thought of as an extension of the literal pattern shown above. But the next two patterns combine a literal and a variable, and the variable binds a value from the subject (

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
12). The fourth pattern captures two values, which makes it conceptually similar to the unpacking assignment
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
13.

If you are using classes to structure your data you can use the class name followed by an argument list resembling a constructor, but with the ability to capture attributes into variables:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
6

You can use positional parameters with some builtin classes that provide an ordering for their attributes (e.g. dataclasses). You can also define a specific position for attributes in patterns by setting the

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
14 special attribute in your classes. If it’s set to (“x”, “y”), the following patterns are all equivalent (and all bind the
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
15 attribute to the
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
16 variable):

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
7

A recommended way to read patterns is to look at them as an extended form of what you would put on the left of an assignment, to understand which variables would be set to what. Only the standalone names (like

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
16 above) are assigned to by a match statement. Dotted names (like
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
18), attribute names (the
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
19 and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
20 above) or class names (recognized by the “(…)” next to them like
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
21 above) are never assigned to.

Patterns can be arbitrarily nested. For example, if we have a short list of points, we could match it like this:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
8

We can add an

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
7 clause to a pattern, known as a “guard”. If the guard is false,
>>> range(10)
range(0, 10)
7 goes on to try the next case block. Note that value capture happens before the guard is evaluated:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
9

Several other key features of this statement:

  • Like unpacking assignments, tuple and list patterns have exactly the same meaning and actually match arbitrary sequences. An important exception is that they don’t match iterators or strings.

  • Sequence patterns support extended unpacking:

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    24 and
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    25 work similar to unpacking assignments. The name after
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    26 may also be
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    10, so
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    28 matches a sequence of at least two items without binding the remaining items.

  • Mapping patterns:

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    29 captures the
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    30 and
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    31 values from a dictionary. Unlike sequence patterns, extra keys are ignored. An unpacking like
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    32 is also supported. (But
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    33 would be redundant, so it is not allowed.)

  • Subpatterns may be captured using the

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    34 keyword:

    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}
    
    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]
    
    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status
    
    0

    will capture the second element of the input as

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    35 (as long as the input is a sequence of two points)

  • Most literals are compared by equality, however the singletons

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    36,
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    37 and
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    38 are compared by identity.

  • Patterns may use named constants. These must be dotted names to prevent them from being interpreted as capture variable:

    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}
    
    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]
    
    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status
    
    1

For a more detailed explanation and additional examples, you can look into PEP 636 which is written in a tutorial format.

4.7. Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
2

The keyword introduces a function definition. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documentation string, or docstring. (More about docstrings can be found in the section .) There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely, all variable assignments in a function store the value in the local symbol table; whereas variable references first look in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and finally in the table of built-in names. Thus, global variables and variables of enclosing functions cannot be directly assigned a value within a function (unless, for global variables, named in a statement, or, for variables of enclosing functions, named in a statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the value of the object). When a function calls another function, or calls itself recursively, a new local symbol table is created for that call.

A function definition associates the function name with the function object in the current symbol table. The interpreter recognizes the object pointed to by that name as a user-defined function. Other names can also point to that same function object and can also be used to access the function:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
3

Coming from other languages, you might object that

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
42 is not a function but a procedure since it doesn’t return a value. In fact, even functions without a statement do return a value, albeit a rather boring one. This value is called
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
38 (it’s a built-in name). Writing the value
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
38 is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using :

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
4

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
5

This example, as usual, demonstrates some new Python features:

  • The statement returns with a value from a function.

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    43 without an expression argument returns
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    38. Falling off the end of a function also returns
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    38.

  • The statement

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    51 calls a method of the list object
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    52. A method is a function that ‘belongs’ to an object and is named
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    53, where
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    54 is some object (this may be an expression), and
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    55 is the name of a method that is defined by the object’s type. Different types define different methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define your own object types and methods, using classes, see ) The method
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    56 shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to
    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    57, but more efficient.

4.8. More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.

4.8.1. Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
6

This function can be called in several ways:

  • giving only the mandatory argument:

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    58

  • giving one of the optional arguments:

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    59

  • or even giving all arguments:

    >>> # Measure some strings:
    ... words = ['cat', 'window', 'defenestrate']
    >>> for w in words:
    ...     print(w, len(w))
    ...
    cat 3
    window 6
    defenestrate 12
    
    60

This example also introduces the keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
7

will print

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
62.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
8

This will print

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
9

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
0

4.8.2. Keyword Arguments

Functions can also be called using of the form

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
63. For instance, the following function:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
1

accepts one required argument (

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
64) and three optional arguments (
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
65,
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
66, and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
67). This function can be called in any of the following ways:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
2

but all the following calls would be invalid:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
3

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must match one of the arguments accepted by the function (e.g.

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
68 is not a valid argument for the
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
69 function), and their order is not important. This also includes non-optional arguments (e.g.
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
70 is valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
4

When a final formal parameter of the form

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
71 is present, it receives a dictionary (see ) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
72 (described in the next subsection) which receives a containing the positional arguments beyond the formal parameter list. (
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
72 must occur before
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
71.) For example, if we define a function like this:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
5

It could be called like this:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
6

and of course it would print:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
7

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were provided in the function call.

4.8.3. Special parameters

By default, arguments may be passed to a Python function either by position or explicitly by keyword. For readability and performance, it makes sense to restrict the way arguments can be passed so that a developer need only look at the function definition to determine if items are passed by position, by position or keyword, or by keyword.

A function definition may look like:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
8

where

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
26 are optional. If used, these symbols indicate the kind of parameter by how the arguments may be passed to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are also referred to as named parameters.

4.8.3.1. Positional-or-Keyword Arguments

If

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
26 are not present in the function definition, arguments may be passed to a function by position or by keyword.

4.8.3.2. Positional-Only Parameters

Looking at this in a bit more detail, it is possible to mark certain parameters as positional-only. If positional-only, the parameters’ order matters, and the parameters cannot be passed by keyword. Positional-only parameters are placed before a

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 (forward-slash). The
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 is used to logically separate the positional-only parameters from the rest of the parameters. If there is no
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 in the function definition, there are no positional-only parameters.

Parameters following the

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 may be positional-or-keyword or keyword-only.

4.8.3.3. Keyword-Only Arguments

To mark parameters as keyword-only, indicating the parameters must be passed by keyword argument, place an

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
26 in the arguments list just before the first keyword-only parameter.

4.8.3.4. Function Examples

Consider the following example function definitions paying close attention to the markers

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
26:

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
9

The first function definition,

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
86, the most familiar form, places no restrictions on the calling convention and arguments may be passed by position or keyword:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
0

The second function

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
87 is restricted to only use positional parameters as there is a
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 in the function definition:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
1

The third function

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
89 only allows keyword arguments as indicated by a
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
26 in the function definition:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
2

And the last uses all three calling conventions in the same function definition:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
3

Finally, consider this function definition which has a potential collision between the positional argument

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
91 and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
92 which has
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
91 as a key:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
4

There is no possible call that will make it return

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
36 as the keyword
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
95 will always bind to the first parameter. For example:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
5

But using

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
75 (positional only arguments), it is possible since it allows
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
91 as a positional argument and
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
95 as a key in the keyword arguments:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
6

In other words, the names of positional-only parameters can be used in

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
92 without ambiguity.

4.8.3.5. Recap

The use case will determine which parameters to use in the function definition:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
7

As guidance:

  • Use positional-only if you want the name of the parameters to not be available to the user. This is useful when parameter names have no real meaning, if you want to enforce the order of the arguments when the function is called or if you need to take some positional parameters and arbitrary keywords.

  • Use keyword-only when names have meaning and the function definition is more understandable by being explicit with names or you want to prevent users relying on the position of the argument being passed.

  • For an API, use positional-only to prevent breaking API changes if the parameter’s name is modified in the future.

4.8.4. Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see ). Before the variable number of arguments, zero or more normal arguments may occur.

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
8

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
00 parameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
9

4.8.5. Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in function expects separate start and stop arguments. If they are not available separately, write the function call with the

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12
26-operator to unpack the arguments out of a list or tuple:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
0

In the same fashion, dictionaries can deliver keyword arguments with the

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
03-operator:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
1

4.8.6. Lambda Expressions

Small anonymous functions can be created with the keyword. This function returns the sum of its two arguments:

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
05. Lambda functions can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
2

The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
3

4.8.7. Documentation Strings

Here are some conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly state the object’s name or type, since these are available by other means (except if the name happens to be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
4

4.8.8. Function Annotations

are completely optional metadata information about the types used by user-defined functions (see PEP 3107 and PEP 484 for more information).

are stored in the

# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
06 attribute of the function as a dictionary and have no effect on any other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an expression evaluating to the value of the annotation. Return annotations are defined by a literal
# Create a sample collection
users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

# Strategy:  Iterate over a copy
for user, status in users.copy().items():
    if status == 'inactive':
        del users[user]

# Strategy:  Create a new collection
active_users = {}
for user, status in users.items():
    if status == 'active':
        active_users[user] = status
07, followed by an expression, between the parameter list and the colon denoting the end of the statement. The following example has a required argument, an optional argument, and the return value annotated:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
5

4.9. Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted for you:

  • Use 4-space indentation, and no tabs.

    4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out.

  • Wrap lines so that they don’t exceed 79 characters.

    This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.

  • Use blank lines to separate functions and classes, and larger blocks of code inside functions.

  • When possible, put comments on a line of their own.

  • Use docstrings.

  • Use spaces around operators and after commas, but not directly inside bracketing constructs:

    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}
    
    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]
    
    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status
    
    09.

  • Name your classes and functions consistently; the convention is to use

    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}
    
    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]
    
    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status
    
    10 for classes and
    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}
    
    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]
    
    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status
    
    11 for functions and methods. Always use
    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}
    
    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]
    
    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status
    
    12 as the name for the first method argument (see for more on classes and methods).

  • Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default, UTF-8, or even plain ASCII work best in any case.

  • Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a different language will read or maintain the code.

Footnotes

Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes to it (items inserted into a list).

What is the Elif in Python?

The elif keyword is used in conditional statements (if statements), and is short for else if.

What is Elif in Python with example?

The elif clause in Python In case else is not specified, and all the statements are false , none of the blocks would be executed. Here's an example: if 51<5: print("False, statement skipped") elif 0<5: print("true, block executed") elif 0<3: print("true, but block will not execute") else: print("If all fails.")

What is the difference between if and Elif in Python?

Difference between if and if elif else Python will evaluate all three if statements to determine if they are true. Once a condition in the if elif else statement is true, Python stop evaluating the other conditions. Because of this, if elif else is faster than three if statements.

When should you use an Elif statement?

Use the elif condition is used to include multiple conditional expressions after the if condition or between the if and else conditions. The elif block is executed if the specified condition evaluates to True . In the above example, the elif conditions are applied after the if condition.