String biner python ke array

Bagaimana seseorang akan berkonversi? . int main() { int jumlah; . Mungkin sesuatu seperti char* arr ? . ) Untuk menyelesaikan Pelatih Kode yang disebut Number of Ones, diperlukan konversi x menjadi array (menurut saya. ). Adakah yang bisa menyarankan pendekatan, mengingat tantangan ini ditandai sebagai mudah dan oleh karena itu tidak perlu menggunakan pengetahuan menengah+?

Tipe data dari array; . mengambang. Untuk data input biner, data harus persis dalam format ini

Show

menghitung. int, opsional

Baca jumlah elemen ini dari data. Jika ini negatif (default), hitungan akan ditentukan dari panjang data

September. str, opsional

Jika tidak diberikan atau, dengan kata lain, string kosong, data akan diinterpretasikan sebagai data biner; . Juga dalam kasus terakhir ini, argumen ini ditafsirkan sebagai string yang memisahkan angka dalam data;

Beberapa kelas koleksi bisa berubah. Metode yang menambah, mengurangi, atau mengatur ulang anggotanya pada tempatnya, dan tidak mengembalikan item tertentu, tidak pernah mengembalikan instance koleksi itu sendiri tetapi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

Beberapa operasi didukung oleh beberapa tipe objek; . Fungsi yang terakhir secara implisit digunakan ketika sebuah objek ditulis oleh fungsi tersebut

Pengujian Nilai Kebenaran

Objek apa pun dapat diuji untuk nilai kebenaran, untuk digunakan dalam kondisi atau atau sebagai operan dari operasi Boolean di bawah ini

Secara default, sebuah objek dianggap benar kecuali kelasnya mendefinisikan metode

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
37 yang mengembalikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 atau metode
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
39 yang mengembalikan nol, saat dipanggil dengan objek. Berikut adalah sebagian besar objek bawaan yang dianggap salah

  • konstanta yang didefinisikan sebagai salah.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    38

  • zero of any numeric type.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    43,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    44,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    45,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    46

  • empty sequences and collections.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    47,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    48,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    49,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    50,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    51,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    52

Operations and built-in functions that have a Boolean result always return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 for false and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 for true, unless otherwise stated. (Important exception. the Boolean operations
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
57 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
58 always return one of their operands. )

Boolean Operations — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 58, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 57, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 61

These are the Boolean operations, ordered by ascending priority

Operation

Result

Notes

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
62

if x is false, then y, else x

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
63

if x is false, then x, else y

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
64

if x is false, then

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, else
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

(3)

Notes

  1. This is a short-circuit operator, so it only evaluates the second argument if the first one is false

  2. This is a short-circuit operator, so it only evaluates the second argument if the first one is true

  3. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    61 has a lower priority than non-Boolean operators, so
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    68 is interpreted as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    69, and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    70 is a syntax error

Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the Boolean operations). Comparisons can be chained arbitrarily; for example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
71 is equivalent to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
72, except that y is evaluated only once (but in both cases z is not evaluated at all when
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
73 is found to be false)

This table summarizes the comparison operations

Operation

Meaning

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74

strictly less than

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75

less than or equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76

strictly greater than

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77

greater than or equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78

equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79

not equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
80

object identity

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
81

negated object identity

Objects of different types, except different numeric types, never compare equal. The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78 operator is always defined but for some object types (for example, class objects) is equivalent to . The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77 operators are only defined where they make sense; for example, they raise a exception when one of the arguments is a complex number

Non-identical instances of a class normally compare as non-equal unless the class defines the method

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the class defines enough of the methods , , , and (in general, and are sufficient, if you want the conventional meanings of the comparison operators)

The behavior of the and operators cannot be customized; also they can be applied to any two objects and never raise an exception

Two more operations with the same syntactic priority, and , are supported by types that are or implement the

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
00 method

Numeric Types — , ,

There are three distinct numeric types. bilangan bulat, bilangan floating point, dan bilangan kompleks. In addition, Booleans are a subtype of integers. Integers have unlimited precision. Angka floating point biasanya diimplementasikan menggunakan double di C; . Bilangan kompleks memiliki bagian nyata dan imajiner, yang masing-masing merupakan bilangan floating point. To extract these parts from a complex number z, use

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
05 and
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
06. (The standard library includes the additional numeric types , for rationals, and , for floating-point numbers with user-definable precision. )

Numbers are created by numeric literals or as the result of built-in functions and operators. Literal bilangan bulat tanpa hiasan (termasuk bilangan hex, oktal, dan biner) menghasilkan bilangan bulat. Literal numerik yang mengandung titik desimal atau tanda eksponen menghasilkan angka floating point. Menambahkan

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
09 atau
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
10 ke literal numerik menghasilkan bilangan imajiner (bilangan kompleks dengan bagian nyata nol) yang dapat Anda tambahkan ke bilangan bulat atau float untuk mendapatkan bilangan kompleks dengan bagian nyata dan imajiner

Python sepenuhnya mendukung aritmatika campuran. ketika operator aritmatika biner memiliki operan dari tipe numerik yang berbeda, operan dengan tipe "sempit" diperlebar ke yang lain, di mana bilangan bulat lebih sempit dari floating point, yang lebih sempit dari kompleks. Perbandingan antara angka-angka dari jenis yang berbeda berlaku seolah-olah nilai pasti dari angka-angka itu sedang dibandingkan.

Konstruktor , , dan dapat digunakan untuk menghasilkan angka dengan tipe tertentu

Semua tipe numerik (kecuali kompleks) mendukung operasi berikut (untuk prioritas operasi, lihat )

Operation

Result

Notes

Dokumentasi lengkap

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
14

jumlah x dan y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
15

selisih x dan y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
16

produk dari x dan y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
17

quotient of x and y

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
18

floored quotient of x and y

(1)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
19

remainder of

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
17

(2)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
21

x negated

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
22

x unchanged

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
23

absolute value or magnitude of x

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
25

x converted to integer

(3)(6)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
27

x converted to floating point

(4)(6)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
29

a complex number with real part re, imaginary part im. im defaults to zero

(6)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
31

conjugate of the complex number c

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
32

the pair

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
33

(2)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
35

x to the power y

(5)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
37

x to the power y

(5)

Notes

  1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int. The result is always rounded towards minus infinity.

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    38 is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42,
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    40 is
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41,
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    42 is
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, and
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    44 is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42

  2. Not for complex numbers. Instead convert to floats using if appropriate

  3. Conversion from floating point to integer may round or truncate as in C; see functions and for well-defined conversions

  4. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive or negative infinity

  5. Python defines

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    49 and
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    50 to be
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    55, as is common for programming languages

  6. The numeric literals accepted include the digits

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 to
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    53 or any Unicode equivalent (code points with the
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    54 property)

    See https. //www. unicode. org/Public/14. 0. 0/ucd/extracted/DerivedNumericType. txt for a complete list of code points with the

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    54 property

All types ( and ) also include the following operations

Operation

Result

x truncated to

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0

the greatest <= x

the least >= x

For additional numeric operations see the and modules

Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in two’s complement with an infinite number of sign bits

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons; the unary operation

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
68 has the same priority as the other unary numeric operations (
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
69 and
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
70)

This table lists the bitwise operations sorted in ascending priority

Operation

Result

Notes

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
71

bitwise or of x and y

(4)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
72

bitwise exclusive or of x and y

(4)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
73

bitwise and of x and y

(4)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
74

x shifted left by n bits

(1)(2)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
75

x shifted right by n bits

(1)(3)

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
76

the bits of x inverted

Notes

  1. Negative shift counts are illegal and cause a to be raised

  2. A left shift by n bits is equivalent to multiplication by

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    78

  3. A right shift by n bits is equivalent to floor division by

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    78

  4. Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation (a working bit-width of

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    80 or more) is sufficient to get the same result as if there were an infinite number of sign bits

Additional Methods on Integer Types

The int type implements the . In addition, it provides a few more methods

int. bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

Lebih tepatnya, jika

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
82 bukan nol, maka
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
83 adalah bilangan bulat positif unik
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
84 sehingga
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
85. Equivalently, when
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
23 is small enough to have a correctly rounded logarithm, then
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
87. If
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
82 is zero, then
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
83 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42

Equivalent to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6

New in version 3. 1

int. bit_count()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known as the population count. Example

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3

Equivalent to

def bit_count(self):
    return bin(self).count("1")

New in version 3. 10

int. to_bytes(length=1 , byteorder='big' , * , signed=False)

Return an array of bytes representing an integer

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'

The integer is represented using length bytes, and defaults to 1. An dimunculkan jika bilangan bulat tidak dapat diwakili dengan jumlah byte yang diberikan

The byteorder argument determines the byte order used to represent the integer, and defaults to

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92. If byteorder is
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92, the most significant byte is at the beginning of the byte array. Jika byteorder adalah
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
_94, byte paling signifikan ada di akhir array byte

Argumen yang ditandatangani menentukan apakah komplemen dua digunakan untuk mewakili bilangan bulat. If signed is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 and a negative integer is given, an is raised. The default value for signed is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

The default values can be used to conveniently turn an integer into a single byte object. However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an

>>> (65).to_bytes()
b'A'

Equivalent to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)

New in version 3. 2

Changed in version 3. 11. Added default argument values for

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
99 and
def bit_count(self):
    return bin(self).count("1")
00.

classmethod int. from_bytes(bytes , byteorder='big' , * , signed=False)

Return the integer represented by the given array of bytes

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680

The argument bytes must either be a or an iterable producing bytes

The byteorder argument determines the byte order used to represent the integer, and defaults to

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92. If byteorder is
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
92, the most significant byte is at the beginning of the byte array. If byteorder is
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
94, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use as the byte order value

The signed argument indicates whether two’s complement is used to represent the integer

Equivalent to

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n

New in version 3. 2

Changed in version 3. 11. Added default argument value for

def bit_count(self):
    return bin(self).count("1")
00.

int. as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator. The integer ratio of integers (whole numbers) is always the integer as the numerator and

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 as the denominator

New in version 3. 8

Metode Tambahan di Float

The float type implements the . float also has the following additional methods

float. as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises on infinities and a on NaNs

float. is_integer()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the float instance is finite with integral value, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in numerical work

float. hex()

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this representation will always include a leading

def bit_count(self):
    return bin(self).count("1")
12 and a trailing
def bit_count(self):
    return bin(self).count("1")
13 and exponent

classmethod float. fromhex(s)

Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing whitespace

Note that is an instance method, while is a class method

A hexadecimal string takes the form

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
0

where the optional

def bit_count(self):
    return bin(self).count("1")
16 may by either
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
69 or
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
70,
def bit_count(self):
    return bin(self).count("1")
19 and
def bit_count(self):
    return bin(self).count("1")
20 are strings of hexadecimal digits, and
def bit_count(self):
    return bin(self).count("1")
21 is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6. 4. 4. 2 of the C99 standard, and also to the syntax used in Java 1. 5 onwards. In particular, the output of is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s
def bit_count(self):
    return bin(self).count("1")
23 format character or Java’s
def bit_count(self):
    return bin(self).count("1")
24 are accepted by

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply the coefficient. For example, the hexadecimal string

def bit_count(self):
    return bin(self).count("1")
26 represents the floating-point number
def bit_count(self):
    return bin(self).count("1")
27, or
def bit_count(self):
    return bin(self).count("1")
28

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
1

Applying the reverse conversion to

def bit_count(self):
    return bin(self).count("1")
28 gives a different hexadecimal string representing the same number

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
2

Hashing of numeric types

For numbers

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
82 and
def bit_count(self):
    return bin(self).count("1")
31, possibly of different types, it’s a requirement that
def bit_count(self):
    return bin(self).count("1")
32 whenever
def bit_count(self):
    return bin(self).count("1")
33 (see the method documentation for more details). For ease of implementation and efficiency across a variety of numeric types (including , , and ) Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies to all instances of and , and all finite instances of and . Essentially, this function is given by reduction modulo
def bit_count(self):
    return bin(self).count("1")
43 for a fixed prime
def bit_count(self):
    return bin(self).count("1")
43. The value of
def bit_count(self):
    return bin(self).count("1")
43 is made available to Python as the
def bit_count(self):
    return bin(self).count("1")
46 attribute of

CPython implementation detail. Currently, the prime used is

def bit_count(self):
    return bin(self).count("1")
48 on machines with 32-bit C longs and
def bit_count(self):
    return bin(self).count("1")
49 on machines with 64-bit C longs

Here are the rules in detail

  • If

    def bit_count(self):
        return bin(self).count("1")
    
    50 is a nonnegative rational number and
    def bit_count(self):
        return bin(self).count("1")
    
    51 is not divisible by
    def bit_count(self):
        return bin(self).count("1")
    
    43, define
    def bit_count(self):
        return bin(self).count("1")
    
    53 as
    def bit_count(self):
        return bin(self).count("1")
    
    54, where
    def bit_count(self):
        return bin(self).count("1")
    
    55 gives the inverse of
    def bit_count(self):
        return bin(self).count("1")
    
    51 modulo
    def bit_count(self):
        return bin(self).count("1")
    
    43

  • If

    def bit_count(self):
        return bin(self).count("1")
    
    50 is a nonnegative rational number and
    def bit_count(self):
        return bin(self).count("1")
    
    51 is divisible by
    def bit_count(self):
        return bin(self).count("1")
    
    43 (but
    def bit_count(self):
        return bin(self).count("1")
    
    61 is not) then
    def bit_count(self):
        return bin(self).count("1")
    
    51 has no inverse modulo
    def bit_count(self):
        return bin(self).count("1")
    
    43 and the rule above doesn’t apply; in this case define
    def bit_count(self):
        return bin(self).count("1")
    
    53 to be the constant value
    def bit_count(self):
        return bin(self).count("1")
    
    65

  • If

    def bit_count(self):
        return bin(self).count("1")
    
    50 is a negative rational number define
    def bit_count(self):
        return bin(self).count("1")
    
    53 as
    def bit_count(self):
        return bin(self).count("1")
    
    68. If the resulting hash is
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, replace it with
    def bit_count(self):
        return bin(self).count("1")
    
    70

  • The particular values

    def bit_count(self):
        return bin(self).count("1")
    
    65 and
    def bit_count(self):
        return bin(self).count("1")
    
    72 are used as hash values for positive infinity or negative infinity (respectively)

  • For a number

    def bit_count(self):
        return bin(self).count("1")
    
    74, the hash values of the real and imaginary parts are combined by computing
    def bit_count(self):
        return bin(self).count("1")
    
    75, reduced modulo
    def bit_count(self):
        return bin(self).count("1")
    
    76 so that it lies in
    def bit_count(self):
        return bin(self).count("1")
    
    77. Again, if the result is
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, it’s replaced with
    def bit_count(self):
        return bin(self).count("1")
    
    70

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a rational number, , or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
3

Iterator Types

Python supports a concept of iteration over containers. Ini diimplementasikan menggunakan dua metode berbeda; . Sequences, described below in more detail, always support the iteration methods

One method needs to be defined for container objects to provide support

container. __iter__()

Return an object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal. ) This method corresponds to the slot of the type structure for Python objects in the Python/C API

The iterator objects themselves are required to support the following two methods, which together form the iterator protocol

iterator. __iter__()

Return the object itself. This is required to allow both containers and iterators to be used with the and statements. This method corresponds to the slot of the type structure for Python objects in the Python/C API

iterator. __next__()

Return the next item from the . If there are no further items, raise the exception. This method corresponds to the slot of the type structure for Python objects in the Python/C API

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other more specialized forms. Jenis spesifik tidak penting di luar penerapan protokol iterator

Once an iterator’s method raises , it must continue to do so on subsequent calls. Implementations that do not obey this property are deemed broken

Generator Types

Python’s s provide a convenient way to implement the iterator protocol. If a container object’s

def bit_count(self):
    return bin(self).count("1")
90 method is implemented as a generator, it will automatically return an iterator object (technically, a generator object) supplying the
def bit_count(self):
    return bin(self).count("1")
90 and methods. More information about generators can be found in

Sequence Types — , ,

There are three basic sequence types. lists, tuples, and range objects. Additional sequence types tailored for processing of and are described in dedicated sections

Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. ABC disediakan untuk mempermudah penerapan operasi ini dengan benar pada tipe urutan kustom

Tabel ini mencantumkan operasi urutan yang diurutkan dalam prioritas menaik. Dalam tabel, s dan t adalah urutan dari tipe yang sama, n, i, j dan k adalah bilangan bulat dan x adalah objek arbitrer yang memenuhi batasan tipe dan nilai apa pun yang diberlakukan oleh s

Operasi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98 dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
99 memiliki prioritas yang sama dengan operasi pembanding. Operasi
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
_69 (penggabungan) dan
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 (pengulangan) memiliki prioritas yang sama dengan operasi numerik yang sesuai.

Operation

Result

Notes

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_01

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 jika item s sama dengan x, jika tidak
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

(1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_04

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika item s sama dengan x, jika tidak
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56

(1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_07

gabungan dari s dan t

(6)(7)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_08 atau
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
09

setara dengan menambahkan s ke dirinya sendiri sebanyak n kali

(2)(7)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_10

item ke-i dari s, asal 0

(3)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_11

potongan s dari i ke j

(3)(4)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_12

slice of s from i to j with step k

(3)(5)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_13

length of s

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
14

smallest item of s

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
15

largest item of s

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
16

index of the first occurrence of x in s (at or after index i and before index j)

(8)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
17

total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by comparing corresponding elements. This means that to compare equal, every element must compare equal and the two sequences must be of the same type and have the same length. (For full details see in the language reference. )

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an or a is encountered (or when the index drops below zero)

Notes

  1. While the

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    98 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    99 operations are used only for simple containment testing in the general case, some specialised sequences (such as , and ) also use them for subsequence testing

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    4

  2. Values of n less than

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 are treated as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 (which yields an empty sequence of the same type as s). Note that items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers; consider

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    5

    What has happened is that

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    27 is a one-element list containing an empty list, so all three elements of
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    28 are references to this single empty list. Modifying any of the elements of
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    29 modifies this single list. You can create a list of different lists this way

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6

    Further explanation is available in the FAQ entry

  3. If i or j is negative, the index is relative to the end of sequence s.

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    30 or
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    31 is substituted. But note that
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    32 is still
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42

  4. The slice of s from i to j is defined as the sequence of items with index k such that

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    34. If i or j is greater than
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13, use
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13. If i is omitted or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, use
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42. If j is omitted or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, use
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13. If i is greater than or equal to j, the slice is empty

  5. The slice of s from i to j with step k is defined as the sequence of items with index

    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    41 such that
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    42. In other words, the indices are
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    43,
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    44,
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    45,
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    46 and so on, stopping when j is reached (but never including j). When k is positive, i and j are reduced to
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    13 if they are greater. When k is negative, i and j are reduced to
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    48 if they are greater. If i or j are omitted or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, it is treated like
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    55

  6. Concatenating immutable sequences always results in a new object. This means that building up a sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost, you must switch to one of the alternatives below

    • if concatenating objects, you can build a list and use at the end or else write to an instance and retrieve its value when complete

    • if concatenating objects, you can similarly use or , or you can do in-place concatenation with a object. objects are mutable and have an efficient overallocation mechanism

    • if concatenating objects, extend a instead

    • for other types, investigate the relevant class documentation

  7. Some sequence types (such as ) only support item sequences that follow specific patterns, and hence don’t support sequence concatenation or repetition

  8. >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    63 raises when x is not found in s. Not all implementations support passing the additional arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equivalent to using
    >>> (1024).to_bytes(2, byteorder='big')
    b'\x04\x00'
    >>> (1024).to_bytes(10, byteorder='big')
    b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
    >>> (-1024).to_bytes(10, byteorder='big', signed=True)
    b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
    >>> x = 1000
    >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
    b'\xe8\x03'
    
    65, only without copying any data and with the returned index being relative to the start of the sequence rather than the start of the slice

Jenis Urutan yang Tidak Dapat Diubah

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence types is support for the built-in

This support allows immutable sequences, such as instances, to be used as keys and stored in and instances

Attempting to hash an immutable sequence that contains unhashable values will result in

Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The ABC is provided to make it easier to correctly implement these operations on custom sequence types

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any type and value restrictions imposed by s (for example, only accepts integers that meet the value restriction

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
74)

Operation

Result

Notes

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
75

item i of s is replaced by x

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
76

slice of s from i to j is replaced by the contents of the iterable t

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
77

same as

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
78

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
79

the elements of

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
12 are replaced by those of t

(1)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
81

removes the elements of

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
12 from the list

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
83

appends x to the end of the sequence (same as

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
84)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
85

removes all items from s (same as

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
86)

(5)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
87

membuat salinan s yang dangkal (sama seperti

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
88)

(5)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
89 or
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
90

extends s with the contents of t (for the most part the same as

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
91)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
92

updates s with its contents repeated n times

(6)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
93

inserts x into s at the index given by i (same as

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
94)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
95 or
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
96

retrieves the item at i and also removes it from s

(2)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_97

hapus item pertama dari s di mana

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
10 sama dengan x

(3)

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
99

membalikkan item s di tempat

(4)

Notes

  1. t harus memiliki panjang yang sama dengan irisan yang diganti

  2. Argumen opsional saya default ke

    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    41, sehingga secara default item terakhir dihapus dan dikembalikan

  3. >>> (65).to_bytes()
    b'A'
    
    _01 muncul ketika x tidak ditemukan di s

  4. Metode

    >>> (65).to_bytes()
    b'A'
    
    _03 memodifikasi urutan di tempat untuk penghematan ruang saat membalikkan urutan besar. Untuk mengingatkan pengguna bahwa itu beroperasi dengan efek samping, itu tidak mengembalikan urutan terbalik

  5. >>> (65).to_bytes()
    b'A'
    
    _04 dan
    >>> (65).to_bytes()
    b'A'
    
    05 disertakan untuk konsistensi dengan antarmuka wadah yang dapat berubah yang tidak mendukung operasi pemotongan (seperti dan ).
    >>> (65).to_bytes()
    b'A'
    
    _05 bukan bagian dari ABC, tetapi sebagian besar kelas urutan konkrit yang dapat diubah menyediakannya

    Baru di versi 3. 3.

    >>> (65).to_bytes()
    b'A'
    
    04 dan
    >>> (65).to_bytes()
    b'A'
    
    05 metode.

  6. Nilai n adalah bilangan bulat, atau implementasi objek. Nilai nol dan negatif dari n menghapus urutan. Item dalam urutan tidak disalin;

Daftar

Daftar adalah urutan yang dapat diubah, biasanya digunakan untuk menyimpan koleksi item yang homogen (di mana tingkat kesamaan yang tepat akan bervariasi berdasarkan aplikasi)

kelas daftar([dapat diubah])

Daftar dapat dibangun dalam beberapa cara

  • Menggunakan sepasang tanda kurung siku untuk menunjukkan daftar kosong.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _49

  • Using square brackets, separating items with commas.

    >>> (65).to_bytes()
    b'A'
    
    _15,
    >>> (65).to_bytes()
    b'A'
    
    16

  • Menggunakan pemahaman daftar.

    >>> (65).to_bytes()
    b'A'
    
    _17

  • Menggunakan konstruktor tipe.

    >>> (65).to_bytes()
    b'A'
    
    _18 atau
    >>> (65).to_bytes()
    b'A'
    
    19

Konstruktor membuat daftar yang itemnya sama dan dalam urutan yang sama dengan item iterable. iterable dapat berupa urutan, wadah yang mendukung iterasi, atau objek iterator. Jika iterable sudah menjadi daftar, salinan dibuat dan dikembalikan, mirip dengan

>>> (65).to_bytes()
b'A'
20. Misalnya,
>>> (65).to_bytes()
b'A'
_21 mengembalikan
>>> (65).to_bytes()
b'A'
22 dan
>>> (65).to_bytes()
b'A'
23 mengembalikan
>>> (65).to_bytes()
b'A'
24. Jika tidak ada argumen yang diberikan, konstruktor membuat daftar kosong baru,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

Banyak operasi lain juga menghasilkan daftar, termasuk bawaan

Daftar mengimplementasikan semua operasi urutan dan. Daftar juga menyediakan metode tambahan berikut

urutkan(* , kunci=None, reverse=False)

Metode ini mengurutkan daftar di tempat, hanya menggunakan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74 perbandingan antar item. Pengecualian tidak ditekan - jika ada operasi pembandingan yang gagal, seluruh operasi pengurutan akan gagal (dan daftar kemungkinan akan ditinggalkan dalam keadaan dimodifikasi sebagian)

menerima dua argumen yang hanya bisa dilewatkan oleh kata kunci ()

kunci menentukan fungsi dari satu argumen yang digunakan untuk mengekstrak kunci perbandingan dari setiap elemen daftar (misalnya,

>>> (65).to_bytes()
b'A'
29). Kunci yang sesuai dengan setiap item dalam daftar dihitung satu kali dan kemudian digunakan untuk keseluruhan proses penyortiran. Nilai default
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_31 berarti item daftar diurutkan secara langsung tanpa menghitung nilai kunci terpisah

Utilitas tersedia untuk mengonversi 2. fungsi x gaya cmp ke fungsi tombol

terbalik adalah nilai boolean. Jika diatur ke

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56, maka elemen daftar diurutkan seolah-olah setiap perbandingan dibalik

Metode ini memodifikasi urutan di tempat untuk penghematan ruang saat menyortir urutan besar. Untuk mengingatkan pengguna bahwa itu beroperasi dengan efek samping, itu tidak mengembalikan urutan yang diurutkan (gunakan untuk secara eksplisit meminta contoh daftar yang diurutkan baru)

Metode ini dijamin stabil. Pengurutan stabil jika menjamin untuk tidak mengubah urutan relatif elemen yang sebanding — ini berguna untuk menyortir dalam beberapa lintasan (misalnya, mengurutkan berdasarkan departemen, kemudian berdasarkan tingkat gaji)

Untuk contoh penyortiran dan tutorial penyortiran singkat, lihat

Detail implementasi CPython. Saat daftar sedang diurutkan, efek dari mencoba mengubah, atau bahkan memeriksa, daftar tidak ditentukan. Implementasi C dari Python membuat daftar tampak kosong selama durasi, dan muncul jika dapat mendeteksi bahwa daftar telah dimutasi selama pengurutan

Tupel

Tupel adalah urutan yang tidak dapat diubah, biasanya digunakan untuk menyimpan kumpulan data heterogen (seperti 2-tupel yang dihasilkan oleh built-in). Tuple juga digunakan untuk kasus-kasus di mana urutan data homogen yang tidak dapat diubah diperlukan (seperti memungkinkan penyimpanan dalam atau contoh)

kelas tuple([dapat diubah])

Tuple dapat dibangun dalam beberapa cara

  • Menggunakan sepasang tanda kurung untuk menunjukkan tuple kosong.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _48

  • Menggunakan tanda koma untuk singleton tuple.

    >>> (65).to_bytes()
    b'A'
    
    _40 atau
    >>> (65).to_bytes()
    b'A'
    
    41

  • Memisahkan item dengan koma.

    >>> (65).to_bytes()
    b'A'
    
    _42 atau
    >>> (65).to_bytes()
    b'A'
    
    43

  • Menggunakan built-in.

    >>> (65).to_bytes()
    b'A'
    
    _44 atau
    >>> (65).to_bytes()
    b'A'
    
    46

Konstruktor membuat tuple yang itemnya sama dan dalam urutan yang sama dengan item iterable. iterable dapat berupa urutan, wadah yang mendukung iterasi, atau objek iterator. Jika iterable sudah menjadi tuple, dikembalikan tidak berubah. Misalnya,

>>> (65).to_bytes()
b'A'
_47 mengembalikan
>>> (65).to_bytes()
b'A'
48 dan
>>> (65).to_bytes()
b'A'
49 mengembalikan
>>> (65).to_bytes()
b'A'
50. Jika tidak ada argumen yang diberikan, konstruktor membuat tupel kosong baru,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
48

Perhatikan bahwa sebenarnya koma yang membuat tuple, bukan tanda kurung. Tanda kurung adalah opsional, kecuali dalam kasus tupel kosong, atau ketika diperlukan untuk menghindari ambiguitas sintaksis. Misalnya,

>>> (65).to_bytes()
b'A'
_52 adalah pemanggilan fungsi dengan tiga argumen, sedangkan
>>> (65).to_bytes()
b'A'
53 adalah pemanggilan fungsi dengan 3-tuple sebagai satu-satunya argumen

Tuple mengimplementasikan semua operasi urutan

Untuk kumpulan data yang heterogen dimana akses berdasarkan nama lebih jelas daripada akses berdasarkan indeks, mungkin merupakan pilihan yang lebih tepat daripada objek tupel sederhana

Rentang

The type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in loops

kelas rentang(berhenti)class range(start, stop[, step])

Argumen untuk konstruktor rentang harus bilangan bulat (baik bawaan atau objek apa pun yang mengimplementasikan metode khusus). Jika argumen step dihilangkan, defaultnya adalah

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55. Jika argumen mulai dihilangkan, defaultnya adalah
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42. Jika langkahnya nol, dinaikkan

Untuk langkah positif, isi rentang

>>> (65).to_bytes()
b'A'
62 ditentukan dengan rumus
>>> (65).to_bytes()
b'A'
63 di mana
>>> (65).to_bytes()
b'A'
64 dan
>>> (65).to_bytes()
b'A'
65

Untuk langkah negatif, isi rentang masih ditentukan oleh rumus

>>> (65).to_bytes()
b'A'
63, tetapi batasannya adalah
>>> (65).to_bytes()
b'A'
64 dan
>>> (65).to_bytes()
b'A'
68

Objek rentang akan kosong jika

>>> (65).to_bytes()
b'A'
69 tidak memenuhi batasan nilai. Rentang memang mendukung indeks negatif, tetapi ini ditafsirkan sebagai pengindeksan dari akhir urutan yang ditentukan oleh indeks positif

Rentang berisi nilai absolut yang lebih besar dari yang diizinkan, tetapi beberapa fitur (seperti ) dapat meningkat

Contoh jangkauan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_7

Rentang menerapkan semua operasi urutan kecuali penggabungan dan pengulangan (karena fakta bahwa objek rentang hanya dapat mewakili urutan yang mengikuti pola yang ketat dan pengulangan dan penggabungan biasanya akan melanggar pola itu)

awal

Nilai parameter awal (atau

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 jika parameter tidak diberikan)

berhenti

Nilai parameter berhenti

melangkah

Nilai parameter langkah (atau

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 jika parameter tidak diberikan)

Keuntungan dari tipe dibandingkan reguler atau adalah bahwa suatu objek akan selalu mengambil jumlah memori (kecil) yang sama, tidak peduli ukuran rentang yang diwakilinya (karena hanya menyimpan nilai

>>> (65).to_bytes()
b'A'
79,
>>> (65).to_bytes()
b'A'
80 dan
>>> (65).to_bytes()
b'A'
81, menghitung masing-masing item

Rentang objek mengimplementasikan ABC, dan menyediakan fitur seperti uji penahanan, pencarian indeks elemen, pemotongan, dan dukungan untuk indeks negatif (lihat )

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_8

Menguji objek rentang untuk kesetaraan dengan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78 dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79 membandingkannya sebagai urutan. Artinya, dua objek rentang dianggap sama jika mewakili urutan nilai yang sama. (Perhatikan bahwa dua objek rentang yang membandingkan sama mungkin memiliki perbedaan , dan atribut, misalnya
>>> (65).to_bytes()
b'A'
88 atau
>>> (65).to_bytes()
b'A'
89. )

Berubah di versi 3. 2. Implementasikan Urutan ABC. Mendukung pemotongan dan indeks negatif. Uji objek untuk keanggotaan dalam waktu konstan alih-alih mengulangi semua item.

Berubah di versi 3. 3. Tentukan ‘==' dan ‘. =' untuk membandingkan berbagai objek berdasarkan urutan nilai yang mereka tetapkan (alih-alih membandingkan berdasarkan identitas objek).

Baru di versi 3. 3. The , dan atribut.

Lihat juga

  • Resep linspace menunjukkan cara mengimplementasikan versi rentang lambat yang cocok untuk aplikasi floating point

Jenis Urutan Teks —

Data tekstual dalam Python ditangani dengan objek, atau string. String tidak dapat diubah dari poin kode Unicode. Literal string ditulis dalam berbagai cara

  • Kutipan tunggal.

    >>> (65).to_bytes()
    b'A'
    
    _96

  • Kutipan ganda.

    >>> (65).to_bytes()
    b'A'
    
    _97

  • Triple dikutip.

    >>> (65).to_bytes()
    b'A'
    
    _98,
    >>> (65).to_bytes()
    b'A'
    
    99

String yang dikutip tiga kali lipat dapat menjangkau beberapa baris - semua spasi yang terkait akan disertakan dalam literal string

Literal string yang merupakan bagian dari ekspresi tunggal dan hanya memiliki spasi putih di antaranya akan secara implisit dikonversi menjadi literal string tunggal. Yaitu,

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_00

Lihat lebih lanjut tentang berbagai bentuk literal string, termasuk urutan escape yang didukung, dan awalan

>>> (65).to_bytes()
b'A'
62 (“mentah”) yang menonaktifkan sebagian besar pemrosesan urutan escape

String juga dapat dibuat dari objek lain menggunakan konstruktor

Karena tidak ada tipe "karakter" yang terpisah, pengindeksan string menghasilkan string dengan panjang 1. Yaitu, untuk string s yang tidak kosong,

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
03

There is also no mutable string type, but or can be used to efficiently construct strings from multiple fragments

Berubah di versi 3. 3. Untuk kompatibilitas mundur dengan seri Python 2, awalan

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
06 sekali lagi diizinkan pada literal string. Itu tidak berpengaruh pada arti literal string dan tidak dapat digabungkan dengan awalan
>>> (65).to_bytes()
b'A'
62.

kelas str(objek='')class str(object=b'', encoding='utf-8', errors='strict')

Mengembalikan versi objek. Jika objek tidak tersedia, kembalikan string kosong. Jika tidak, perilaku

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_33 bergantung pada apakah penyandian atau kesalahan diberikan, sebagai berikut

Jika tidak ada penyandian atau kesalahan yang diberikan,

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
09 mengembalikan , yang merupakan representasi string "informal" atau objek yang dapat dicetak dengan baik. Untuk objek string, ini adalah string itu sendiri. Jika objek tidak memiliki metode, maka kembali ke kembali

Jika setidaknya satu pengkodean atau kesalahan diberikan, objek harus berupa (mis. g. atau ). Dalam hal ini, jika objek adalah (atau ) objek, maka ________121______18 setara dengan. Jika tidak, objek bytes yang mendasari objek buffer diperoleh sebelum dipanggil. Lihat dan untuk informasi tentang objek penyangga

Melewati objek tanpa argumen pengkodean atau kesalahan termasuk dalam kasus pertama mengembalikan representasi string informal (lihat juga opsi baris perintah ke Python). Misalnya

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_9

Untuk informasi lebih lanjut tentang kelas

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
_22 dan metodenya, lihat dan bagian di bawah ini. Untuk menghasilkan string yang diformat, lihat bagian dan. Selain itu, lihat bagian

Metode Untai

String mengimplementasikan semua operasi urutan, bersama dengan metode tambahan yang dijelaskan di bawah ini

String juga mendukung dua gaya pemformatan string, satu memberikan tingkat fleksibilitas dan penyesuaian yang besar (lihat , dan ) dan yang lainnya berdasarkan pemformatan gaya C

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
26 yang menangani rentang jenis yang lebih sempit dan sedikit lebih sulit untuk digunakan dengan benar, tetapi seringkali

Bagian pustaka standar mencakup sejumlah modul lain yang menyediakan berbagai utilitas terkait teks (termasuk dukungan ekspresi reguler dalam modul)

str. kapitalisasi()

Kembalikan salinan string dengan karakter pertamanya dikapitalisasi dan sisanya dengan huruf kecil

Berubah di versi 3. 8. Karakter pertama sekarang dimasukkan ke dalam huruf judul bukan huruf besar. Artinya, karakter seperti digraf hanya akan memiliki huruf kapital pertama, bukan karakter penuh.

str. casefold()

Kembalikan salinan string yang dilipat-lipat. String casefolded dapat digunakan untuk pencocokan caseless

Pelipatan huruf mirip dengan huruf kecil tetapi lebih agresif karena dimaksudkan untuk menghapus semua perbedaan huruf besar-kecil dalam sebuah string. Misalnya, huruf kecil Jerman

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
28 setara dengan
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
29. Karena sudah menggunakan huruf kecil, tidak akan melakukan apa pun untuk
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
28;

Algoritme pelipatan kasus dijelaskan di bagian 3. 13 dari Standar Unicode

Baru di versi 3. 3

str. pusat(lebar[ , fillchar])

Kembali terpusat dalam string lebar panjang. Padding dilakukan menggunakan fillchar yang ditentukan (defaultnya adalah spasi ASCII). String asli dikembalikan jika lebarnya kurang dari atau sama dengan

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

str. hitung(sub[ , start[, end]])

Kembalikan jumlah kejadian substring yang tidak tumpang tindih dalam rentang [mulai, akhir]. Argumen opsional awal dan akhir ditafsirkan sebagai notasi irisan

Jika sub kosong, kembalikan jumlah string kosong di antara karakter yang merupakan panjang string ditambah satu

str. enkode(enkode=', errors='strict')

Kembalikan string yang disandikan ke

encoding defaults to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
36; see for possible values

kesalahan mengontrol bagaimana kesalahan pengkodean ditangani. Jika

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_37 (default), pengecualian dimunculkan. Nilai lain yang mungkin adalah
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_39,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
40,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
41,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
42 dan nama lain yang terdaftar melalui. Lihat detailnya

Untuk alasan kinerja, nilai kesalahan tidak diperiksa validitasnya kecuali jika kesalahan pengkodean benar-benar terjadi, diaktifkan atau digunakan

Berubah di versi 3. 1. Menambahkan dukungan untuk argumen kata kunci.

Berubah di versi 3. 9. Nilai argumen kesalahan sekarang dicentang masuk dan masuk.

str. diakhiri dengan(akhiran[ , start[, end]])

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika string diakhiri dengan akhiran yang ditentukan, jika tidak, kembalikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. sufiks juga bisa menjadi sekumpulan sufiks yang harus dicari. Dengan start opsional, uji mulai pada posisi itu. Dengan ujung opsional, berhentilah membandingkan pada posisi itu

str. perluas tab(ukuran tab=8)

Kembalikan salinan string tempat semua karakter tab diganti dengan satu atau beberapa spasi, bergantung pada kolom saat ini dan ukuran tab yang diberikan. Posisi tab terjadi setiap karakter ukuran tab (default adalah 8, memberikan posisi tab pada kolom 0, 8, 16 dan seterusnya). Untuk memperluas string, kolom saat ini disetel ke nol dan string diperiksa karakter demi karakter. Jika karakternya adalah tab (

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_46), satu atau lebih karakter spasi dimasukkan ke dalam hasil hingga kolom saat ini sama dengan posisi tab berikutnya. (Karakter tab itu sendiri tidak disalin. ) Jika karakternya adalah baris baru (
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_47) atau return (
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
48), karakter tersebut akan disalin dan kolom saat ini disetel ulang ke nol. Karakter lain apa pun disalin tidak berubah dan kolom saat ini bertambah satu terlepas dari bagaimana karakter direpresentasikan saat dicetak

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
0

str. temukan(sub[ , start[, end]])

Kembalikan indeks terendah dalam string tempat substring sub ditemukan di dalam irisan

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Argumen opsional awal dan akhir ditafsirkan sebagai notasi irisan. Kembalikan
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
_41 jika sub tidak ditemukan

Catatan

Metode ini sebaiknya digunakan hanya jika Anda perlu mengetahui posisi sub. Untuk memeriksa apakah sub adalah substring atau bukan, gunakan operator

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
1

str. format(*args , **kwargs)

Lakukan operasi pemformatan string. The string on which this method is called can contain literal text or replacement fields delimited by braces

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
2

See for a description of the various formatting options that can be specified in format strings

Catatan

When formatting a number (, , , and subclasses) with the

def bit_count(self):
    return bin(self).count("1")
51 type (ex.
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
59), the function temporarily sets the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
60 locale to the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
61 locale to decode
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
62 and
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
63 fields of
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
64 if they are non-ASCII or longer than 1 byte, and the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
61 locale is different than the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
60 locale. This temporary change affects other threads

Changed in version 3. 7. When formatting a number with the

def bit_count(self):
    return bin(self).count("1")
51 type, the function sets temporarily the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
60 locale to the
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
61 locale in some cases.

str. format_map(mapping)

Similar to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
70, except that
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
71 is used directly and not copied to a . This is useful if for example
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
71 is a dict subclass

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
3

New in version 3. 2

str. index(sub[ , start[ , end]])

Like , but raise when the substring is not found

str. isalnum()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are alphanumeric and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. A character
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
78 is alphanumeric if one of the following returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56.
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
80,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
81,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
82, or
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
83

str. isalpha()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are alphabetic and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i. e. , those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is empty or all characters in the string are ASCII,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are decimal characters and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”

str. isdigit()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are digits and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Digits include decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is a valid identifier according to the language definition, section

Call to test whether string

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
94 is a reserved identifier, such as and

Example

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
4

str. islower()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all cased characters in the string are lowercase and there is at least one cased character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

str. isnumeric()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are numeric characters, and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are printable or the string is empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Nonprintable characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those which should not be escaped when is invoked on a string. It has no bearing on the handling of strings written to or . )

str. isspace()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika hanya ada karakter spasi putih dalam string dan setidaknya ada satu karakter,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak

A character is whitespace if in the Unicode character database (see ), either its general category is

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
09 (“Separator, space”), or its bidirectional class is one of
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
10,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
11, or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
12

str. istitle()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

str. isupper()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all cased characters in the string are uppercase and there is at least one cased character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
5

str. join(iterable)

Return a string which is the concatenation of the strings in iterable. A will be raised if there are any non-string values in iterable, including objects. The separator between elements is the string providing this method

str. ljust(width[ , fillchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

str. lower()

Return a copy of the string with all the cased characters converted to lowercase

The lowercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. Jika dihilangkan atau

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_31, argumen chars default untuk menghapus spasi. Argumen chars bukanlah awalan;

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
6

Lihat metode yang akan menghapus satu string awalan daripada semua kumpulan karakter. Misalnya

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
7

statis str. maketrans(x[ , y[, z]])

Metode statis ini mengembalikan tabel terjemahan yang dapat digunakan

Jika hanya ada satu argumen, itu harus berupa kamus yang memetakan ordinal Unicode (bilangan bulat) atau karakter (string dengan panjang 1) ke ordinal Unicode, string (dengan panjang arbitrer) atau

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31. Kunci karakter kemudian akan dikonversi menjadi ordinal

Jika ada dua argumen, keduanya harus berupa string dengan panjang yang sama, dan dalam kamus yang dihasilkan, setiap karakter di x akan dipetakan ke karakter pada posisi yang sama di y. If there is a third argument, it must be a string, whose characters will be mapped to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 in the result

str. partition(sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix(prefix , /)

If the string starts with the prefix string, return

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
25. Otherwise, return a copy of the original string

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
8

New in version 3. 9

str. removesuffix(suffix , /)

If the string ends with the suffix string and that suffix is not empty, return

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
26. Otherwise, return a copy of the original string

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
9

New in version 3. 9

str. ganti(lama , baru[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind(sub[ , start[ , end]])

Return the highest index in the string where substring sub is found, such that sub is contained within

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Optional arguments start and end are interpreted as in slice notation. Return
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 on failure

str. rindex(sub[ , start[ , end]])

Like but raises when the substring sub is not found

str. rjust(width[ , fillchar])

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

str. rpartition(sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, any whitespace string is a separator. Except for splitting from the right, behaves like which is described in detail below

str. rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_count(self):
    return bin(self).count("1")
0

See for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_count(self):
    return bin(self).count("1")
1

str. split(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done (thus, the list will have at most

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
37 elements). If maxsplit is not specified or
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41, then there is no limit on the number of splits (all possible splits are made)

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example,

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
39 returns
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
40). The sep argument may consist of multiple characters (for example,
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
41 returns
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
42). Splitting an empty string with a specified separator returns
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
43

For example

def bit_count(self):
    return bin(self).count("1")
2

If sep is not specified or is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, a different splitting algorithm is applied. runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 separator returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

For example

def bit_count(self):
    return bin(self).count("1")
3

str. splitlines(keepends=False)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

Metode ini terbagi pada batas garis berikut. In particular, the boundaries are a superset of

Representation

Description

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
47

Line Feed

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
48

Carriage Return

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
49

Carriage Return + Line Feed

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
50 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
51

Line Tabulation

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
52 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
53

Form Feed

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
54

File Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
55

Group Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
56

Record Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
57

Next Line (C1 Control Code)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
58

Line Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
59

Paragraph Separator

Changed in version 3. 2.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
50 and
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
52 added to list of line boundaries.

For example

def bit_count(self):
    return bin(self).count("1")
4

Unlike when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_count(self):
    return bin(self).count("1")
5

For comparison,

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
63 gives

def bit_count(self):
    return bin(self).count("1")
6

str. startswith(prefix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if string starts with the prefix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. awalan juga bisa menjadi kumpulan awalan yang harus dicari. With optional start, test string beginning at that position. With optional end, stop comparing string at that position

str. strip([karakter])

Kembalikan salinan string dengan karakter awal dan akhir dihapus. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_count(self):
    return bin(self).count("1")
7

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed from the leading end until reaching a string character that is not contained in the set of characters in chars. A similar action takes place on the trailing end. For example

def bit_count(self):
    return bin(self).count("1")
8

str. swapcase()

Kembalikan salinan string dengan karakter huruf besar yang diubah menjadi huruf kecil dan sebaliknya. Note that it is not necessarily true that

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
67

str. title()

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_count(self):
    return bin(self).count("1")
9

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
0

The function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
1

str. translate(table)

Return a copy of the string in which each character has been mapped through the given translation table. The table must be an object that implements indexing via

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
69, typically a or . When indexed by a Unicode ordinal (an integer), the table object can do any of the following. return a Unicode ordinal or a string, to map the character to one or more other characters; return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, to delete the character from the return string; or raise a exception, to map the character to itself

You can use to create a translation map from character-to-character mappings in different formats

See also the module for a more flexible approach to custom character mappings

str. upper()

Return a copy of the string with all the cased characters converted to uppercase. Note that

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
74 might be
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 if
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
94 contains uncased characters or if the Unicode category of the resulting character(s) is not “Lu” (Letter, uppercase), but e. g. “Lt” (Letter, titlecase)

The uppercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. zfill(width)

Return a copy of the string left filled with ASCII

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77 digits to make a string of length width. A leading sign prefix (
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78/
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79) is handled by inserting the padding after the sign character rather than before. The original string is returned if width is less than or equal to
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

For example

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
2

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 26-style String Formatting

Catatan

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). Using the newer , the interface, or may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility

String objects have one unique built-in operation. the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 operator (modulo). This is also known as the string formatting or interpolation operator. Given
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
84 (where format is a string),
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
86 in the C language

If format requires a single argument, values may be a single non-tuple object. Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    87 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    88)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    90 (dot) followed by the precision. If specified as
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier (optional)

  7. Conversion type

Jika argumen yang benar adalah kamus (atau jenis pemetaan lainnya), maka format dalam string harus menyertakan kunci pemetaan dalam tanda kurung ke dalam kamus yang dimasukkan tepat setelah karakter

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87. The mapping key selects the value to be formatted from the mapping. For example

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
3

In this case no

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Flag

Meaning

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
94

The value conversion will use the “alternate form” (where defined below)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77

The conversion will be zero padded for numeric values

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79

The converted value is left adjusted (overrides the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77 conversion if both are given)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
98

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78

A sign character (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79) will precede the conversion (overrides a “space” flag)

A length modifier (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
02,
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
03, or
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
04) may be present, but is ignored as it is not necessary for Python – so e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
05 is identical to
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
06

The conversion types are

Conversion

Meaning

Notes

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
08

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
09

Signed octal value

(1)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
10

Obsolete type – it is identical to

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

(6)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
12

Signed hexadecimal (lowercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
13

Signed hexadecimal (uppercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
14

Floating point exponential format (lowercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_15

Floating point exponential format (uppercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
16

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
17

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
18

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
19

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
20

Single character (accepts integer or single character string)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_21

String (mengonversi objek Python apa pun menggunakan )

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
23

String (mengonversi objek Python apa pun menggunakan )

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_25

String (mengonversi objek Python apa pun menggunakan )

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87

No argument is converted, results in a

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 character in the result

Notes

  1. The alternate form causes a leading octal specifier (

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    29) to be inserted before the first digit

  2. The alternate form causes a leading

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    30 or
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    31 (depending on whether the
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    12 or
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    13 format was used) to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34, the output is truncated to
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34 characters

  6. See PEP 237

Since Python strings have an explicit length,

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
36 conversions do not assume that
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
37 is the end of the string

Changed in version 3. 1.

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
38 conversions for numbers whose absolute value is over 1e50 are no longer replaced by
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
39 conversions.

Binary Sequence Types — , ,

The core built-in types for manipulating binary data are and . They are supported by which uses the to access the memory of other binary objects without needing to make a copy

The module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision floating values

Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely related to string objects in a variety of other ways

class bytes([source[ , encoding[ , errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
47 prefix is added

  • Single quotes.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    48

  • Double quotes.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    49

  • Triple quoted.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    50,
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    51

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence

As with string literals, bytes literals may also use a

>>> (65).to_bytes()
b'A'
62 prefix to disable processing of escape sequences. See for more about the various forms of bytes literal, including supported escape sequences

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable sequences of integers, with each value in the sequence restricted such that

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
53 (attempts to violate this restriction will trigger ). This is done deliberately to emphasise that while many binary formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that are not ASCII compatible will usually lead to data corruption)

In addition to the literal forms, bytes objects can be created in a number of other ways

  • A zero-filled bytes object of a specified length.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    55

  • From an iterable of integers.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    56

  • Copying existing binary data via the buffer protocol.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    57

Also see the built-in

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format

classmethod fromhex(string)

This class method returns a bytes object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
4

Changed in version 3. 7. now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
5

Jika Anda ingin membuat string hex lebih mudah dibaca, Anda dapat menentukan parameter sep pemisah karakter tunggal untuk disertakan dalam output. By default, this separator will be included between each byte. A second optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right, negative values from the left

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
6

New in version 3. 5

Changed in version 3. 8. now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b,

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
61 will be an integer, while
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
62 will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
63) since it is often more useful than e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
64. You can always convert a bytes object into a list of integers using
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
65

Bytearray Objects

objects are a mutable counterpart to objects

class bytearray([source[ , encoding[ , errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    68

  • Creating a zero-filled instance with a given length.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    69

  • From an iterable of integers.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    70

  • Copying existing binary data via the buffer protocol.

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    71

As bytearray objects are mutable, they support the sequence operations in addition to the common bytes and bytearray operations described in

Also see the built-in

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that format

classmethod fromhex(string)

This class method returns bytearray object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
7

Changed in version 3. 7. now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
8

New in version 3. 5

Changed in version 3. 8. Similar to , now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b,

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
61 will be an integer, while
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
62 will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
78) since it is often more useful than e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
79. You can always convert a bytearray object into a list of integers using
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
65

Bytes and Bytearray Operations

Both bytes and bytearray objects support the sequence operations. They interoperate not just with operands of the same type, but with any . Due to this flexibility, they can be freely mixed in operations without causing errors. However, the return type of the result may depend on the order of operands

Catatan

Metode pada objek byte dan bytearray tidak menerima string sebagai argumennya, sama seperti metode pada string tidak menerima byte sebagai argumennya. For example, you have to write

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
9

and

>>> (65).to_bytes()
b'A'
0

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided when working with arbitrary binary data. These restrictions are covered below

Catatan

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may lead to data corruption

The following methods on bytes and bytearray objects can be used with arbitrary binary data

bytes. hitung(sub[ , . start[, end]])bytearray.count(sub[ , start[ , end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

The subsequence to search for may be any or an integer in the range 0 to 255

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus one

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. removeprefix(prefix , /)bytearray. removeprefix(prefix , /)

If the binary data starts with the prefix string, return

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
81. Otherwise, return a copy of the original binary data

>>> (65).to_bytes()
b'A'
1

The prefix may be any

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. removesuffix(suffix , /)bytearray. removesuffix(suffix , /)

If the binary data ends with the suffix string and that suffix is not empty, return

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
82. Otherwise, return a copy of the original binary data

>>> (65).to_bytes()
b'A'
2

The suffix may be any

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. decode(encoding='utf-8' , errors='strict')bytearray. decode(encoding='utf-8' , errors='strict')

Return the bytes decoded to a

encoding defaults to

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
36; see for possible values

errors controls how decoding errors are handled. If

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
37 (the default), a exception is raised. Other possible values are
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
39,
def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
40, and any other name registered via . See for details

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs, is enabled or a is used

Catatan

Passing the encoding argument to allows decoding any directly, without needing to make a temporary

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
23 or
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
24 object

Berubah di versi 3. 1. Menambahkan dukungan untuk argumen kata kunci.

Berubah di versi 3. 9. Nilai argumen kesalahan sekarang dicentang masuk dan masuk.

bytes. endswith(suffix[ , start[ , end]])bytearray. endswith(suffix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the binary data ends with the specified suffix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The suffix(es) to search for may be any

bytes. find(sub[ , start[ , end]])bytearray. find(sub[ , start[ , end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Optional arguments start and end are interpreted as in slice notation. Return
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 if sub is not found

The subsequence to search for may be any or an integer in the range 0 to 255

Catatan

Metode ini sebaiknya digunakan hanya jika Anda perlu mengetahui posisi sub. Untuk memeriksa apakah sub adalah substring atau bukan, gunakan operator

>>> (65).to_bytes()
b'A'
3

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. index(sub[ , start[ , end]])bytearray. index(sub[ , start[ , end]])

Like , but raise when the subsequence is not found

The subsequence to search for may be any or an integer in the range 0 to 255

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join(iterable)bytearray. bergabung(dapat diubah)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A will be raised if there are any values in iterable that are not , including objects. The separator between elements is the contents of the bytes or bytearray object providing this method

static bytes. maketrans(from , to)static bytearray. maketrans(from , to)

This static method returns a translation table usable for that will map each character in from into the character at the same position in to; from and to must both be and have the same length

New in version 3. 1

bytes. partition(sep)bytearray. partition(sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects

The separator to search for may be any

bytes. replace(old , new[ , count])bytearray. replace(old , new[ , count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

The subsequence to search for and its replacement may be any

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rfind(sub[ , start[ , end]])bytearray. rfind(sub[ , start[ , end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
49. Optional arguments start and end are interpreted as in slice notation. Return
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41 on failure

The subsequence to search for may be any or an integer in the range 0 to 255

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rindex(sub[ , start[ , end]])bytearray. rindex(sub[ , start[ , end]])

Like but raises when the subsequence sub is not found

The subsequence to search for may be any or an integer in the range 0 to 255

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rpartition(sep)bytearray. rpartition(sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence

The separator to search for may be any

bytes. startswith(prefix[ , start[ , end]])bytearray. startswith(prefix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the binary data starts with the specified prefix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

Awalan yang akan dicari dapat berupa apa saja

bytes. translate(table , / , delete=b'')bytearray. translate(table , / , delete=b'')

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes object of length 256

You can use the method to create a translation table

Set the table argument to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 for translations that only delete characters

>>> (65).to_bytes()
b'A'
4

Changed in version 3. 6. delete sekarang didukung sebagai argumen kata kunci.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. center(width[ , fillbyte])bytearray. pusat(lebar[ , fillbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For objects, the original sequence is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. ljust(width[ , fillbyte])bytearray. ljust(width[ , fillbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For objects, the original sequence is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. lstrip([chars])bytearray. lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

>>> (65).to_bytes()
b'A'
5

The binary sequence of byte values to remove may be any . See for a method that will remove a single prefix string rather than all of a set of characters. For example

>>> (65).to_bytes()
b'A'
6

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rjust(width[ , fillbyte])bytearray. rjust(width[ , fillbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For objects, the original sequence is returned if width is less than or equal to

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
13

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rsplit(sep=None , maxsplit=- 1)bytearray. rsplit(sep=None , maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the right, behaves like which is described in detail below

bytes. rstrip([chars])bytearray. rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

>>> (65).to_bytes()
b'A'
7

The binary sequence of byte values to remove may be any . See for a method that will remove a single suffix string rather than all of a set of characters. For example

>>> (65).to_bytes()
b'A'
8

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. split(sep=None , maxsplit=- 1)bytearray. pisah(sep=Tidak ada, maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given and non-negative, at most maxsplit splits are done (thus, the list will have at most

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
37 elements). If maxsplit is not specified or is
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
41, then there is no limit on the number of splits (all possible splits are made)

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences (for example,

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
27 returns
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
28). The sep argument may consist of a multibyte sequence (for example,
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
29 returns
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
30). Splitting an empty sequence with a specified separator returns
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
31 or
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
32 depending on the type of object being split. The sep argument may be any

For example

>>> (65).to_bytes()
b'A'
9

If sep is not specified or is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, a different splitting algorithm is applied. runs of consecutive ASCII whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has leading or trailing whitespace. Akibatnya, memisahkan urutan kosong atau urutan yang hanya terdiri dari spasi putih ASCII tanpa pemisah yang ditentukan mengembalikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_0

byte. strip([karakter] . )bytearray.strip([karakter])

Kembalikan salinan urutan dengan byte awal dan akhir yang ditentukan dihapus. Argumen chars adalah urutan biner yang menentukan kumpulan nilai byte yang akan dihapus - namanya mengacu pada fakta bahwa metode ini biasanya digunakan dengan karakter ASCII. Jika dihilangkan atau

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, argumen chars default untuk menghapus spasi ASCII. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_1

Urutan biner dari nilai byte yang akan dihapus dapat berupa apa saja

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

Metode berikut pada objek byte dan bytearray mengasumsikan penggunaan format biner yang kompatibel dengan ASCII dan tidak boleh diterapkan pada data biner arbitrer. Perhatikan bahwa semua metode bytearray di bagian ini tidak beroperasi di tempat, dan malah menghasilkan objek baru

byte. kapitalisasi()bytearray. kapitalisasi()

Kembalikan salinan urutan dengan setiap byte ditafsirkan sebagai karakter ASCII, dan byte pertama dikapitalisasi dan sisanya dengan huruf kecil. Nilai byte non-ASCII diteruskan tanpa perubahan

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. perluas tab(ukuran tab=8 . )bytearray.expandtabs(ukuran tab=8)

Kembalikan salinan urutan di mana semua karakter tab ASCII diganti dengan satu atau lebih spasi ASCII, bergantung pada kolom saat ini dan ukuran tab yang diberikan. Posisi tab terjadi setiap byte tabsize (default adalah 8, memberikan posisi tab pada kolom 0, 8, 16 dan seterusnya). Untuk memperluas urutan, kolom saat ini diatur ke nol dan urutan diperiksa byte demi byte. Jika byte adalah karakter tab ASCII (

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
36), satu atau lebih karakter spasi dimasukkan ke dalam hasil hingga kolom saat ini sama dengan posisi tab berikutnya. (Karakter tab itu sendiri tidak disalin. ) Jika byte saat ini adalah baris baru ASCII (
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
37) atau carriage return (
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
38), ini akan disalin dan kolom saat ini disetel ulang ke nol. Nilai byte lainnya disalin tidak berubah dan kolom saat ini bertambah satu terlepas dari bagaimana nilai byte direpresentasikan saat dicetak

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_2

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. isalnum()bytearray. isalnum()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika semua byte dalam urutan adalah karakter ASCII abjad atau angka desimal ASCII dan urutannya tidak kosong,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak. Karakter ASCII alfabetis adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
41. Digit desimal ASCII adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
42

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_3

byte. isalpha()bytearray. isalpha()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika semua byte dalam urutan adalah karakter ASCII abjad dan urutannya tidak kosong,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak. Karakter ASCII alfabetis adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
41

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_4

byte. isascii()bytearray. isascii()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the sequence is empty or all bytes in the sequence are ASCII,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Byte ASCII berada dalam kisaran 0-0x7F

New in version 3. 7

byte. isdigit()bytearray. angka()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika semua byte dalam urutan adalah digit desimal ASCII dan urutannya tidak kosong,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak. Digit desimal ASCII adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
42

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_5

byte. lebih rendah()bytearray. lebih rendah()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika setidaknya ada satu karakter ASCII huruf kecil dalam urutan dan tidak ada karakter ASCII huruf besar,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_6

Karakter ASCII huruf kecil adalah nilai byte dalam urutan

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Karakter ASCII huruf besar adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

byte. isspace()bytearray. isspace()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika semua byte dalam urutan adalah spasi putih ASCII dan urutannya tidak kosong,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak. Karakter spasi putih ASCII adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
57 (spasi, tab, baris baru, carriage return, tab vertikal, umpan formulir)

byte. istitle()bytearray. istitle()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika urutannya adalah huruf judul ASCII dan urutannya tidak kosong,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak. See for more details on the definition of “titlecase”

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
7

byte. persediaan()bytearray. supper()

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika setidaknya ada satu karakter ASCII alfabet huruf besar dalam urutan dan tidak ada karakter ASCII huruf kecil,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 jika tidak

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_8

Karakter ASCII huruf kecil adalah nilai byte dalam urutan

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Karakter ASCII huruf besar adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

byte. bawah()bytearray. lebih rendah()

Kembalikan salinan urutan dengan semua karakter ASCII huruf besar yang dikonversi ke pasangan huruf kecil yang sesuai

For example

def to_bytes(n, length=1, byteorder='big', signed=False):
    if byteorder == 'little':
        order = range(length)
    elif byteorder == 'big':
        order = reversed(range(length))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    return bytes((n >> i*8) & 0xff for i in order)
_9

Karakter ASCII huruf kecil adalah nilai byte dalam urutan

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Karakter ASCII huruf besar adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. splitlines(keepends=False . )bytearray.splitlines(keepends=False)

Kembalikan daftar garis dalam urutan biner, putus pada batas garis ASCII. Metode ini menggunakan pendekatan pemisahan garis. Jeda baris tidak disertakan dalam daftar yang dihasilkan kecuali keepends diberikan dan benar

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_0

Unlike when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_1

byte. swapcase()bytearray. swapcase()

Kembalikan salinan urutan dengan semua karakter ASCII huruf kecil yang dikonversi ke pasangan huruf besar yang sesuai dan sebaliknya

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_2

Karakter ASCII huruf kecil adalah nilai byte dalam urutan

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Karakter ASCII huruf besar adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

Tidak seperti , selalu demikian

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
71 untuk versi biner. Konversi kasus bersifat simetris dalam ASCII, meskipun hal itu umumnya tidak berlaku untuk poin kode Unicode arbitrer

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. judul()bytearray. judul()

Mengembalikan versi huruf-huruf dari urutan biner di mana kata-kata dimulai dengan karakter ASCII huruf besar dan karakter yang tersisa adalah huruf kecil. Nilai byte tanpa huruf dibiarkan tidak dimodifikasi

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_3

Karakter ASCII huruf kecil adalah nilai byte dalam urutan

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Karakter ASCII huruf besar adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54. Semua nilai byte lainnya tidak di-uncase

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_4

Solusi untuk apostrof dapat dibangun menggunakan ekspresi reguler

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_5

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. upper()bytearray. atas()

Kembalikan salinan urutan dengan semua karakter ASCII huruf kecil yang dikonversi ke pasangan huruf besar yang sesuai

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_6

Karakter ASCII huruf kecil adalah nilai byte dalam urutan

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
53. Karakter ASCII huruf besar adalah nilai byte dalam urutan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
54

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. zisi(lebar)bytearray. zisi(lebar)

Mengembalikan salinan urutan kiri diisi dengan ASCII

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
76 digit untuk membuat urutan panjang lebar. Prefiks tanda depan (
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
77/
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
78) ditangani dengan menyisipkan padding setelah karakter tanda, bukan sebelumnya. Untuk objek, urutan aslinya dikembalikan jika lebarnya kurang dari atau sama dengan
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
80

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_7

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) _ Pemformatan Byte 26 gaya

Catatan

Operasi pemformatan yang dijelaskan di sini menunjukkan berbagai keanehan yang menyebabkan sejumlah kesalahan umum (seperti gagal menampilkan tupel dan kamus dengan benar). Jika nilai yang dicetak mungkin berupa tupel atau kamus, bungkus dalam tupel

Objek byte (

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
23/
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
24) memiliki satu operasi bawaan yang unik. operator
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_83 (modulo). Ini juga dikenal sebagai pemformatan byte atau operator interpolasi. Diberikan
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_84 (di mana format adalah objek byte),
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
83 spesifikasi konversi dalam format diganti dengan nol atau lebih elemen nilai. Efeknya mirip dengan menggunakan
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
86 dalam bahasa C

Jika format memerlukan argumen tunggal, nilai mungkin merupakan objek non-tupel tunggal. Jika tidak, nilai harus berupa tupel dengan jumlah persis item yang ditentukan oleh objek format byte, atau objek pemetaan tunggal (misalnya, kamus)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    87 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    88)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a

    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    90 (dot) followed by the precision. If specified as
    >>> int.from_bytes(b'\x00\x10', byteorder='big')
    16
    >>> int.from_bytes(b'\x00\x10', byteorder='little')
    4096
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
    -1024
    >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
    64512
    >>> int.from_bytes([255, 0, 0], byteorder='big')
    16711680
    
    89 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier (optional)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 character. Kunci pemetaan memilih nilai yang akan diformat dari pemetaan. Misalnya

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_8

In this case no

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Flag

Meaning

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
94

The value conversion will use the “alternate form” (where defined below)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77

The conversion will be zero padded for numeric values

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79

The converted value is left adjusted (overrides the

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
77 conversion if both are given)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
98

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78

A sign character (

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
78 or
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
79) will precede the conversion (overrides a “space” flag)

A length modifier (

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
02,
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
03, or
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
04) may be present, but is ignored as it is not necessary for Python – so e. g.
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
05 is identical to
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
06

The conversion types are

Conversion

Meaning

Notes

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
08

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
09

Signed octal value

(1)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
10

Obsolete type – it is identical to

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
07

(8)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
12

Signed hexadecimal (lowercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
13

Signed hexadecimal (uppercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
14

Floating point exponential format (lowercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_15

Floating point exponential format (uppercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
16

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
17

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
18

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
19

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
20

Single byte (menerima objek integer atau single byte)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_022

Byte (objek apa pun yang mengikuti atau memiliki

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
023)

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
23

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_23 adalah alias untuk
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
022 dan hanya boleh digunakan untuk basis kode Python2/3

(6)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_25

Byte (mengonversi objek Python apa pun menggunakan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
028)

(5)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_21

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_21 adalah alias untuk
def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
25 dan hanya boleh digunakan untuk basis kode Python2/3

(7)

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87

No argument is converted, results in a

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
87 character in the result

Notes

  1. The alternate form causes a leading octal specifier (

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    29) to be inserted before the first digit

  2. The alternate form causes a leading

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    30 or
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    31 (depending on whether the
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    12 or
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    13 format was used) to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34, the output is truncated to
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    34 characters

  6. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _041 sudah usang, tetapi tidak akan dihapus selama 3. seri x

  7. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _042 sudah usang, tetapi tidak akan dihapus selama 3. seri x

  8. See PEP 237

Catatan

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

Lihat juga

PEP 461 - Menambahkan % pemformatan ke byte dan bytearray

New in version 3. 5

Tampilan Memori

objek memungkinkan kode Python untuk mengakses data internal objek yang mendukung tanpa menyalin

kelas memoryview(objek)

Buat objek referensi itu. object must support the buffer protocol. Objek bawaan yang mendukung protokol buffer termasuk dan

A memiliki gagasan tentang elemen, yang merupakan unit memori atom yang ditangani oleh objek asal. Untuk banyak tipe sederhana seperti and , sebuah elemen berukuran satu byte, tetapi tipe lain seperti mungkin memiliki elemen yang lebih besar

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_051 sama dengan panjang. Jika
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_053, panjangnya 1. Jika
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_054, panjangnya sama dengan jumlah elemen dalam tampilan. Untuk dimensi yang lebih tinggi, panjangnya sama dengan panjang representasi daftar bersarang dari tampilan. Atribut akan memberi Anda jumlah byte dalam satu elemen

A mendukung pemotongan dan pengindeksan untuk mengekspos datanya. Pemotongan satu dimensi akan menghasilkan subview

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
_9

Jika adalah salah satu penentu format asli dari modul, pengindeksan dengan bilangan bulat atau tupel bilangan bulat juga didukung dan mengembalikan satu elemen dengan tipe yang benar. Tampilan memori satu dimensi dapat diindeks dengan integer atau tuple satu integer. Tampilan memori multi-dimensi dapat diindeks dengan tupel bilangan bulat ndim yang tepat di mana ndim adalah jumlah dimensi. Tampilan memori nol dimensi dapat diindeks dengan tuple kosong

Berikut adalah contoh dengan format non-byte

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_0

Jika objek yang mendasarinya dapat ditulisi, tampilan memori mendukung penugasan irisan satu dimensi. Mengubah ukuran tidak diperbolehkan

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_1

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. Hash didefinisikan sebagai

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_059

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_2

Berubah di versi 3. 3. Tampilan memori satu dimensi sekarang dapat dipotong. Tampilan memori satu dimensi dengan format 'B', 'b' atau 'c' kini dapat di-hash.

Berubah di versi 3. 4. memoryview sekarang terdaftar secara otomatis dengan

Berubah di versi 3. 5. memoryview sekarang dapat diindeks dengan tuple bilangan bulat.

memiliki beberapa metode

__eq__(eksportir)

Tampilan memori dan pengekspor PEP 3118 sama jika bentuknya sama dan jika semua nilai yang sesuai sama ketika kode format masing-masing operan ditafsirkan menggunakan sintaks

Untuk subset string format yang saat ini didukung oleh ,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
065 dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
066 sama jika
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
067

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_3

Jika salah satu string format tidak didukung oleh modul, maka objek akan selalu dibandingkan sebagai tidak sama (bahkan jika string format dan konten buffer identik)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_4

Perhatikan bahwa, seperti angka floating point,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
069 tidak berarti
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
070 untuk objek memoryview

Changed in version 3. 3. Versi sebelumnya membandingkan memori mentah dengan mengabaikan format item dan struktur array logis.

tobyte(pesanan='C')

Kembalikan data dalam buffer sebagai bytestring. Ini sama dengan memanggil konstruktor pada tampilan memori

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_5

Untuk array yang tidak bersebelahan, hasilnya sama dengan representasi daftar yang diratakan dengan semua elemen dikonversi menjadi byte. mendukung semua string format, termasuk yang tidak ada dalam sintaks modul

Baru di versi 3. 8. pesanan bisa {‘C’, ‘F’, ‘A’}. Ketika pesanan adalah 'C' atau 'F', data dari larik asli diubah menjadi pesanan C atau Fortran. Untuk tampilan yang berdekatan, 'A' mengembalikan salinan persis dari memori fisik. Secara khusus, urutan Fortran dalam memori dipertahankan. Untuk tampilan yang tidak bersebelahan, data dikonversi ke C terlebih dahulu. order=None sama dengan order=’C’.

hex([sep[ , bytes_per_sep]])

Mengembalikan objek string yang berisi dua digit heksadesimal untuk setiap byte dalam buffer

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
6

New in version 3. 5

Changed in version 3. 8. Similar to , now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

daftar()

Kembalikan data dalam buffer sebagai daftar elemen

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_7

Berubah di versi 3. 3. sekarang mendukung semua format asli karakter tunggal dalam sintaks modul serta representasi multidimensi.

hanya untuk dibaca()

Mengembalikan versi readonly dari objek memoryview. Objek memoryview asli tidak berubah

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_8

New in version 3. 8

rilis()

Lepaskan buffer dasar yang diekspos oleh objek memoryview. Banyak objek mengambil tindakan khusus saat tampilan diadakan padanya (misalnya, a akan melarang pengubahan ukuran untuk sementara);

Setelah metode ini dipanggil, setiap operasi lebih lanjut pada tampilan akan memunculkan a (kecuali dirinya sendiri yang dapat dipanggil berkali-kali)

def from_bytes(bytes, byteorder='big', signed=False):
    if byteorder == 'little':
        little_ordered = list(bytes)
    elif byteorder == 'big':
        little_ordered = list(reversed(bytes))
    else:
        raise ValueError("byteorder must be either 'little' or 'big'")

    n = sum(b << i*8 for i, b in enumerate(little_ordered))
    if signed and little_ordered and (little_ordered[-1] & 0x80):
        n -= 1 << 8*len(little_ordered)

    return n
_9

Protokol manajemen konteks dapat digunakan untuk efek serupa, menggunakan pernyataan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_0

New in version 3. 2

transmisikan(format[ , shape])

Transmisikan tampilan memori ke format atau bentuk baru. shape defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
082, which means that the result view will be one-dimensional. Nilai yang dikembalikan adalah tampilan memori baru, tetapi buffer itu sendiri tidak disalin. Cast yang didukung adalah 1D -> C- dan C-contiguous -> 1D

Format tujuan dibatasi ke format asli elemen tunggal dalam sintaks. Salah satu format harus format byte ('B', 'b' atau 'c'). Panjang byte hasil harus sama dengan panjang aslinya

Cast 1D/panjang ke 1D/unsigned byte

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_1

Cast 1D/unsigned byte ke 1D/char

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_2

Cast 1D/bytes ke 3D/ints ke 1D/signed char

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_3

Transmisikan 1D/unsigned long ke 2D/unsigned long

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_4

Baru di versi 3. 3

Berubah di versi 3. 5. Format sumber tidak lagi dibatasi saat mentransmisi ke tampilan byte.

Ada juga beberapa atribut readonly yang tersedia

obj

Objek yang mendasari tampilan memori

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_5

Baru di versi 3. 3

nbytes

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_084. Ini adalah jumlah ruang dalam byte yang akan digunakan array dalam representasi yang berdekatan. Ini belum tentu sama dengan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_085

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_6

Array multi-dimensi

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_7

Baru di versi 3. 3

hanya bisa dibaca

A bool indicating whether the memory is read only

format

String berisi format (dalam gaya modul) untuk setiap elemen dalam tampilan. Tampilan memori dapat dibuat dari pengekspor dengan string format arbitrer, tetapi beberapa metode (mis. g. ) dibatasi untuk format elemen tunggal asli

Berubah di versi 3. 3. format

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
088 sekarang ditangani sesuai dengan sintaks modul struct. Ini berarti bahwa
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_089.

itemsize

Ukuran dalam byte dari setiap elemen tampilan memori

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_8

ndim

Bilangan bulat yang menunjukkan berapa banyak dimensi dari array multi-dimensi yang diwakili oleh memori

membentuk

Sebuah tupel bilangan bulat panjang memberikan bentuk memori sebagai array N-dimensi

Berubah di versi 3. 3. Tuple kosong bukan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 saat ndim = 0.

langkah

Tuple bilangan bulat dengan panjang pemberian ukuran dalam byte untuk mengakses setiap elemen untuk setiap dimensi array

Berubah di versi 3. 3. Tuple kosong bukan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 saat ndim = 0.

suboffsets

Digunakan secara internal untuk array gaya PIL. Nilai hanya bersifat informasional

c_contiguous

Bool yang menunjukkan apakah memori adalah C-

Baru di versi 3. 3

f_contiguous

Sebuah bool yang menunjukkan apakah memori tersebut adalah Fortran

Baru di versi 3. 3

berdekatan

Bool yang menunjukkan apakah memori itu

Baru di versi 3. 3

Jenis Setel — ,

Objek set adalah kumpulan objek berbeda yang tidak terurut. Penggunaan umum termasuk pengujian keanggotaan, menghapus duplikat dari suatu urutan, dan menghitung operasi matematika seperti persimpangan, penyatuan, perbedaan, dan perbedaan simetris. (Untuk container lain lihat built-in , , dan class, dan module. )

Seperti koleksi lainnya, set dukungan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
100,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
101, dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
102. Menjadi koleksi yang tidak terurut, himpunan tidak merekam posisi elemen atau urutan penyisipan. Dengan demikian, set tidak mendukung pengindeksan, pemotongan, atau perilaku seperti urutan lainnya

Saat ini ada dua tipe set bawaan, dan. Jenisnya bisa berubah — isinya bisa diubah menggunakan metode seperti

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
106 dan
>>> (65).to_bytes()
b'A'
01. Since it is mutable, it has no hash value and cannot be used as either a dictionary key or as an element of another set. Jenisnya tidak dapat diubah dan — isinya tidak dapat diubah setelah dibuat;

Set yang tidak kosong (bukan set yang dibekukan) dapat dibuat dengan menempatkan daftar elemen yang dipisahkan koma di dalam kurung kurawal, misalnya.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_109, selain konstruktor

Konstruktor untuk kedua kelas bekerja sama

kelas set([dapat diubah])class frozenset([iterable])

Kembalikan set baru atau objek set beku yang elemennya diambil dari iterable. Unsur-unsur suatu himpunan harus. Untuk merepresentasikan himpunan dari himpunan, himpunan bagian dalam harus berupa objek. Jika iterable tidak ditentukan, set kosong baru dikembalikan

Set dapat dibuat dengan beberapa cara

  • Gunakan daftar elemen yang dipisahkan koma di dalam kurung kurawal.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _109

  • Gunakan pemahaman yang ditetapkan.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _113

  • Gunakan konstruktor tipe.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    51,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    115,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    116

Contoh dari dan menyediakan operasi berikut

lensa)

Mengembalikan jumlah elemen dalam set s (kardinalitas s)

x dalam s

Test x for membership in s

x tidak dalam s

Uji x untuk non-keanggotaan dalam s

terpisah(lainnya)

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika himpunan tidak memiliki elemen yang sama dengan yang lain. Himpunan-himpunan saling lepas jika dan hanya jika perpotongannya adalah himpunan kosong

subset(lainnya)diatur <= other

Uji apakah setiap elemen di himpunan ada di yang lain

setel < lainnya

Uji apakah himpunan tersebut merupakan subhimpunan yang tepat dari yang lain, yaitu,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
120

issuperset(other)set >= other

Uji apakah setiap elemen lainnya ada di himpunan

setel > lainnya

Uji apakah himpunan tersebut merupakan superset yang tepat dari yang lain, yaitu,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
121

serikat(*lainnya)set | lainnya . .

Kembalikan set baru dengan elemen dari set dan yang lainnya

persimpangan(*lainnya)set & other & ...

Kembalikan set baru dengan elemen yang umum ke set dan yang lainnya

perbedaan(*lainnya)set - other - ...

Kembalikan set baru dengan elemen di set yang tidak ada di set lainnya

perbedaan_simetris(lainnya)set ^ other

Kembalikan set baru dengan elemen di set atau lainnya tetapi tidak keduanya

salin()

Kembalikan salinan set yang dangkal

Perhatikan, versi non-operator dari , , , , , dan metode akan menerima iterable apa pun sebagai argumen. Sebaliknya, rekan berbasis operator mereka membutuhkan argumen mereka untuk ditetapkan. Ini mencegah konstruksi rawan kesalahan seperti

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
128 demi
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
129 yang lebih mudah dibaca

Keduanya dan dukungan diatur untuk mengatur perbandingan. Dua himpunan adalah sama jika dan hanya jika setiap elemen dari setiap himpunan terkandung dalam yang lain (masing-masing merupakan subhimpunan dari yang lain). Himpunan kurang dari himpunan lain jika dan hanya jika himpunan pertama adalah himpunan bagian yang tepat dari himpunan kedua (adalah himpunan bagian, tetapi tidak sama). Himpunan lebih besar dari himpunan lain jika dan hanya jika himpunan pertama adalah superset yang tepat dari himpunan kedua (adalah superset, tetapi tidak sama)

Contoh dibandingkan dengan contoh berdasarkan anggotanya. Misalnya,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
134 mengembalikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 dan begitu juga
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
136

Perbandingan subset dan kesetaraan tidak digeneralisasikan ke fungsi pengurutan total. For example, any two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
138,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
139, atau
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
140

Karena set hanya menentukan pengurutan parsial (hubungan subset), output dari metode ini tidak ditentukan untuk daftar set

Setel elemen, seperti kunci kamus, harus

Operasi biner yang menggabungkan instance dengan mengembalikan tipe operan pertama. Misalnya.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_144 mengembalikan instance dari

Tabel berikut mencantumkan operasi yang tersedia untuk yang tidak berlaku untuk instance yang tidak dapat diubah

perbarui(*lainnya)set |= lainnya . .

Perbarui set, tambahkan elemen dari yang lainnya

intersection_update(*lainnya)set &= other & ...

Perbarui set, pertahankan hanya elemen yang ditemukan di dalamnya dan yang lainnya

difference_update(*lainnya)set -= other | .

Perbarui set, hapus elemen yang ditemukan di orang lain

symmetric_difference_update(other)set ^= other

Perbarui set, pertahankan hanya elemen yang ditemukan di salah satu set, tetapi tidak di keduanya

tambahkan(elem)

Tambahkan elemen elemen ke set

hapus(elem)

Hapus elemen elemen dari set. Menaikkan jika elem tidak terkandung dalam set

buang(elem)

Hapus elemen elemen dari set jika ada

pop()

Hapus dan kembalikan elemen arbitrer dari set. Raises if the set is empty

jelas()

Hapus semua elemen dari set

Perhatikan, versi non-operator dari , , , dan metode akan menerima iterable apa pun sebagai argumen

Perhatikan, argumen elem ke

>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
00, , dan metode mungkin satu set. Untuk mendukung pencarian frozenset yang setara, yang sementara dibuat dari elem

Jenis Pemetaan —

Objek memetakan nilai ke objek arbitrer. Pemetaan adalah objek yang bisa berubah. Saat ini hanya ada satu jenis pemetaan standar, kamus. (Untuk container lain lihat built-in , , dan class, dan module. )

Kunci kamus adalah nilai yang hampir sewenang-wenang. Nilai yang bukan , yaitu nilai yang berisi daftar, kamus, atau tipe lain yang dapat diubah (yang dibandingkan dengan nilai, bukan dengan identitas objek) tidak boleh digunakan sebagai kunci. Nilai yang membandingkan sama (seperti

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_55,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
163, dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56) dapat digunakan secara bergantian untuk mengindeks entri kamus yang sama

kelas dikt(**kwargs)class dict(mapping, **kwargs)class dict(iterable, **kwargs)

Mengembalikan kamus baru yang diinisialisasi dari argumen posisi opsional dan kumpulan argumen kata kunci yang mungkin kosong

Kamus dapat dibuat dengan beberapa cara

  • Gunakan daftar

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    165 pasangan yang dipisahkan koma di dalam kurung kurawal.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    166 atau
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    167

  • Use a dict comprehension.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    50,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    169

  • Gunakan konstruktor tipe.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    170,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    171,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    172

Jika tidak ada argumen posisi yang diberikan, kamus kosong akan dibuat. Jika argumen posisi diberikan dan itu adalah objek pemetaan, kamus dibuat dengan pasangan kunci-nilai yang sama dengan objek pemetaan. Jika tidak, argumen posisi harus berupa objek. Setiap item dalam iterable harus merupakan iterable dengan tepat dua objek. Objek pertama dari setiap item menjadi kunci dalam kamus baru, dan objek kedua menjadi nilai yang sesuai. Jika kunci muncul lebih dari sekali, nilai terakhir untuk kunci tersebut menjadi nilai yang sesuai di kamus baru

Jika argumen kata kunci diberikan, argumen kata kunci dan nilainya ditambahkan ke kamus yang dibuat dari argumen posisi. Jika kunci yang ditambahkan sudah ada, nilai dari argumen kata kunci menggantikan nilai dari argumen posisi

Sebagai ilustrasi, contoh berikut semua mengembalikan kamus sama dengan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
173

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
_9

Memberikan argumen kata kunci seperti pada contoh pertama hanya berfungsi untuk kunci yang merupakan pengidentifikasi Python yang valid. Jika tidak, kunci apa pun yang valid dapat digunakan

Ini adalah operasi yang didukung kamus (dan oleh karena itu, jenis pemetaan khusus juga harus didukung)

daftar(d)

Mengembalikan daftar semua kunci yang digunakan dalam kamus d

meminjamkan)

Return the number of items in the dictionary d

d[kunci]

Kembalikan item d dengan key key. Menimbulkan jika kunci tidak ada di peta

Jika subkelas dict mendefinisikan metode

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
175 dan kunci tidak ada, operasi
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
176 memanggil metode itu dengan kunci kunci sebagai argumen. Operasi
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
176 kemudian mengembalikan atau menaikkan apa pun yang dikembalikan atau dimunculkan oleh panggilan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
178. Tidak ada operasi atau metode lain yang memanggil
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
175. Jika
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_175 tidak ditentukan, dinaikkan.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_175 harus menjadi metode;

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_00

Contoh di atas menunjukkan bagian dari implementasi. Metode

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_184 yang berbeda digunakan oleh

d[key] = nilai

Tetapkan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_176 ke nilai

del d[key]

Hapus

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_176 dari d. Menimbulkan jika kunci tidak ada di peta

kunci di d

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika d memiliki kunci kunci, selain itu
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

kunci bukan di d

Equivalent to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
191

iter(d)

Kembalikan iterator di atas kunci kamus. Ini adalah jalan pintas untuk

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_192

jelas()

Hapus semua item dari kamus

salin()

Kembalikan salinan kamus yang dangkal

classmethod fromkeys(dapat diubah[, value])

Buat kamus baru dengan kunci dari iterable dan nilai disetel ke nilai

adalah metode kelas yang mengembalikan kamus baru. nilai default ke

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_31. Semua nilai merujuk hanya pada satu contoh, jadi umumnya tidak masuk akal jika nilai menjadi objek yang dapat diubah seperti daftar kosong. Untuk mendapatkan nilai yang berbeda, gunakan a sebagai gantinya

dapatkan(kunci[ , default])

Kembalikan nilai untuk kunci jika kunci ada di kamus, kalau tidak default. Jika default tidak diberikan, defaultnya adalah

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, sehingga metode ini tidak pernah memunculkan

item()

Kembalikan tampilan baru item kamus (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 pasang). Lihat

kunci()

Return a new view of the dictionary’s keys. Lihat

pop(key[ , default])

Jika kunci ada di kamus, hapus dan kembalikan nilainya, jika tidak, kembalikan default. Jika default tidak diberikan dan kunci tidak ada dalam kamus, a dimunculkan

popitem()

Hapus dan kembalikan pasangan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_197 dari kamus. Pasangan dikembalikan dalam urutan LIFO

berguna untuk mengulang kamus secara destruktif, seperti yang sering digunakan dalam algoritme set. Jika kamus kosong, pemanggilan memunculkan a

Berubah di versi 3. 7. Pesanan LIFO sekarang dijamin. Di versi sebelumnya, akan mengembalikan pasangan kunci/nilai arbitrer.

terbalik(d)

Kembalikan iterator terbalik di atas kunci kamus. Ini adalah jalan pintas untuk

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_204

New in version 3. 8

setdefault(kunci[ , default])

Jika kunci ada di kamus, kembalikan nilainya. Jika tidak, masukkan kunci dengan nilai default dan kembalikan default. default defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

perbarui([lainnya])

Perbarui kamus dengan pasangan kunci/nilai dari yang lain, menimpa kunci yang sudah ada. Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_31

menerima objek kamus lain atau iterable dari pasangan kunci/nilai (sebagai tupel atau iterable lainnya dengan panjang dua). Jika argumen kata kunci ditentukan, kamus kemudian diperbarui dengan pasangan kunci/nilai tersebut.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_208

nilai()

Kembalikan tampilan baru dari nilai kamus. Lihat

Perbandingan kesetaraan antara satu tampilan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
209 dan lainnya akan selalu mengembalikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. Ini juga berlaku saat membandingkan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_209 dengan dirinya sendiri

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_01

d . lainnya

Buat kamus baru dengan gabungan kunci dan nilai d dan lainnya, yang keduanya harus berupa kamus. Nilai-nilai lain diprioritaskan ketika d dan kunci berbagi lainnya

New in version 3. 9

d . = lainnya

Perbarui kamus d dengan kunci dan nilai dari yang lain, yang dapat berupa a atau an dari pasangan kunci/nilai. The values of other take priority when d and other share keys

New in version 3. 9

Dictionaries compare equal if and only if they have the same

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197 pairs (regardless of ordering). Order comparisons (‘<’, ‘<=’, ‘>=’, ‘>’) raise .

Kamus mempertahankan urutan penyisipan. Perhatikan bahwa memperbarui kunci tidak memengaruhi urutan. Kunci yang ditambahkan setelah penghapusan dimasukkan di bagian akhir

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_02

Berubah di versi 3. 7. Urutan kamus dijamin menjadi urutan penyisipan. Perilaku ini merupakan detail implementasi CPython dari 3. 6.

Tampilan kamus dan kamus dapat dibalik

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_03

Berubah di versi 3. 8. Kamus sekarang dapat dibalik.

Lihat juga

dapat digunakan untuk membuat tampilan read-only dari a

Objek tampilan kamus

Objek yang dikembalikan oleh , dan adalah objek tampilan. Mereka memberikan tampilan dinamis pada entri kamus, yang berarti bahwa saat kamus berubah, tampilan mencerminkan perubahan ini

Tampilan kamus dapat diulangi untuk menghasilkan datanya masing-masing, dan mendukung pengujian keanggotaan

len(tampilan dikt)

Kembalikan jumlah entri dalam kamus

iter(dictview)

Mengembalikan iterator di atas kunci, nilai, atau item (diwakili sebagai tupel

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197) di kamus

Kunci dan nilai diulang dalam urutan penyisipan. Ini memungkinkan pembuatan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_220 pasang menggunakan.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_222. Cara lain untuk membuat daftar yang sama adalah
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
223

Mengulangi tampilan sambil menambahkan atau menghapus entri dalam kamus dapat meningkatkan atau gagal mengulang semua entri

Berubah di versi 3. 7. Urutan kamus dijamin menjadi urutan penyisipan.

x in dictview

Kembalikan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_56 jika x ada di kunci, nilai, atau item kamus yang mendasarinya (dalam kasus terakhir, x harus berupa tupel
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
197)

terbalik (dictview)

Mengembalikan iterator terbalik di atas kunci, nilai, atau item kamus. Tampilan akan diulang dalam urutan terbalik dari penyisipan

Berubah di versi 3. 8. Tampilan kamus kini dapat dibalik.

dictview. pemetaan

Kembalikan a yang membungkus kamus asli yang dirujuk oleh tampilan

New in version 3. 10

Tampilan kunci seperti set karena entri mereka unik dan dapat di-hash. Jika semua nilai dapat di-hash, sehingga

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_197 pasangan unik dan dapat di-hash, maka tampilan item juga seperti set. (Tampilan nilai tidak diperlakukan sebagai set-like karena entri umumnya tidak unik. ) Untuk tampilan set-like, semua operasi yang ditentukan untuk kelas dasar abstrak tersedia (misalnya,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74, atau
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
232)

Contoh penggunaan tampilan kamus

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
04

Jenis Manajer Konteks

Pernyataan Python mendukung konsep konteks runtime yang ditentukan oleh pengelola konteks. Ini diimplementasikan menggunakan sepasang metode yang memungkinkan kelas yang ditentukan pengguna untuk menentukan konteks runtime yang dimasukkan sebelum badan pernyataan dieksekusi dan keluar saat pernyataan berakhir

pengelola konteks. __masuk__()

Masukkan konteks runtime dan kembalikan objek ini atau objek lain yang terkait dengan konteks runtime. Nilai yang dikembalikan oleh metode ini terikat pada pengidentifikasi dalam klausa

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
234 menggunakan manajer konteks ini

Contoh manajer konteks yang mengembalikan dirinya sendiri adalah a. Objek file mengembalikan dirinya sendiri dari __enter__() agar dapat digunakan sebagai ekspresi konteks dalam pernyataan

Contoh pengelola konteks yang mengembalikan objek terkait adalah yang dikembalikan oleh. Manajer ini menyetel konteks desimal aktif ke salinan konteks desimal asli dan kemudian mengembalikan salinannya. Ini memungkinkan perubahan dilakukan pada konteks desimal saat ini di badan pernyataan tanpa memengaruhi kode di luar pernyataan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081

pengelola konteks. __exit__(exc_type , exc_val, exc_tb)

Keluar dari konteks runtime dan kembalikan flag Boolean yang menunjukkan jika ada pengecualian yang terjadi harus ditekan. Jika pengecualian terjadi saat menjalankan isi pernyataan, argumen berisi jenis pengecualian, nilai, dan informasi traceback. Jika tidak, ketiga argumen tersebut adalah

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

Mengembalikan nilai sebenarnya dari metode ini akan menyebabkan pernyataan menekan pengecualian dan melanjutkan eksekusi dengan pernyataan segera setelah pernyataan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081. Otherwise the exception continues propagating after this method has finished executing. Pengecualian yang terjadi selama eksekusi metode ini akan menggantikan setiap pengecualian yang terjadi di badan pernyataan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081

Pengecualian yang diteruskan tidak boleh dimunculkan kembali secara eksplisit - sebagai gantinya, metode ini harus mengembalikan nilai salah untuk menunjukkan bahwa metode berhasil diselesaikan dan tidak ingin menekan pengecualian yang dimunculkan. Ini memungkinkan kode manajemen konteks untuk dengan mudah mendeteksi apakah suatu metode benar-benar gagal atau tidak

Python mendefinisikan beberapa manajer konteks untuk mendukung sinkronisasi utas yang mudah, penutupan cepat file atau objek lain, dan manipulasi yang lebih sederhana dari konteks aritmatika desimal aktif. Jenis spesifik tidak diperlakukan secara khusus di luar penerapan protokol manajemen konteksnya. Lihat modul untuk beberapa contoh

Python dan dekorator menyediakan cara mudah untuk mengimplementasikan protokol ini. Jika fungsi generator didekorasi dengan dekorator, itu akan mengembalikan manajer konteks yang mengimplementasikan metode yang diperlukan dan, daripada iterator yang dihasilkan oleh fungsi generator yang tidak didekorasi

Perhatikan bahwa tidak ada slot khusus untuk salah satu metode ini dalam struktur tipe untuk objek Python di Python/C API. Jenis ekstensi yang ingin mendefinisikan metode ini harus menyediakannya sebagai metode normal yang dapat diakses Python. Dibandingkan dengan biaya tambahan untuk menyiapkan konteks runtime, biaya tambahan dari pencarian kamus kelas tunggal dapat diabaikan

Ketik Jenis Anotasi — ,

Tipe bawaan inti untuk adalah dan

Tipe Alias ​​Generik

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252 objek umumnya dibuat oleh sebuah kelas. Mereka paling sering digunakan dengan , seperti atau. For example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
255 is a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 object created by subscripting the
def bit_count(self):
    return bin(self).count("1")
93 class with the argument .
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252 objek dimaksudkan terutama untuk digunakan bersama

Catatan

Biasanya hanya mungkin untuk membuat subskrip kelas jika kelas tersebut mengimplementasikan metode khusus

Objek

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252 bertindak sebagai proxy untuk a , mengimplementasikan generik berparameter

Untuk kelas wadah, argumen yang diberikan ke salah satu kelas dapat menunjukkan jenis elemen yang dikandung objek. Misalnya,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_262 dapat digunakan dalam anotasi tipe untuk menandakan a yang semua elemennya bertipe

Untuk kelas yang mendefinisikan tetapi bukan wadah, argumen yang diberikan ke langganan kelas akan sering menunjukkan tipe kembalian dari satu atau lebih metode yang didefinisikan pada objek. Misalnya, dapat digunakan pada tipe data dan tipe data

  • Jika

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _269,
    >>> n = 19
    >>> bin(n)
    '0b10011'
    >>> n.bit_count()
    3
    >>> (-n).bit_count()
    3
    
    82 akan menjadi objek di mana nilai pengembalian
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    271 dan
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    272 keduanya akan bertipe. Kita dapat merepresentasikan objek semacam ini dalam anotasi tipe dengan
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    252
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    275

  • Jika

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    276, (perhatikan
    def from_bytes(bytes, byteorder='big', signed=False):
        if byteorder == 'little':
            little_ordered = list(bytes)
        elif byteorder == 'big':
            little_ordered = list(reversed(bytes))
        else:
            raise ValueError("byteorder must be either 'little' or 'big'")
    
        n = sum(b << i*8 for i, b in enumerate(little_ordered))
        if signed and little_ordered and (little_ordered[-1] & 0x80):
            n -= 1 << 8*len(little_ordered)
    
        return n
    
    47 untuk ),
    def bit_count(self):
        return bin(self).count("1")
    
    31 juga akan menjadi turunan dari
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    280, tetapi nilai pengembalian
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    281 dan
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    282 akan bertipe. Dalam anotasi tipe, kami akan mewakili variasi objek ini dengan
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    284

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252 objek adalah turunan dari kelas, yang juga dapat digunakan untuk membuat objek
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 secara langsung

T[X, Y, . ]

Membuat

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252 yang mewakili tipe
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
289 yang diparameterisasi oleh tipe X, Y, dan lainnya bergantung pada
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
289 yang digunakan. Misalnya, sebuah fungsi mengharapkan elemen yang mengandung

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_05

Contoh lain untuk objek, menggunakan a , yang merupakan tipe generik yang mengharapkan dua parameter tipe yang mewakili tipe kunci dan tipe nilai. Dalam contoh ini, fungsi mengharapkan

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
68 dengan kunci tipe dan nilai tipe

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_06

Fungsi bawaan dan tidak menerima tipe

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 untuk argumen kedua mereka

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_07

Runtime Python tidak berlaku. Ini meluas ke tipe generik dan parameter tipenya. Saat membuat objek wadah dari

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252, elemen dalam wadah tidak dicentang berdasarkan jenisnya. Misalnya, kode berikut tidak dianjurkan, tetapi akan berjalan tanpa kesalahan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_08

Selanjutnya, parameter generik menghapus parameter tipe selama pembuatan objek

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_09

Memanggil atau pada generik menunjukkan tipe parameter

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_10

Metode wadah umum akan memunculkan pengecualian untuk melarang kesalahan seperti

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
304

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_11

Namun, ekspresi seperti itu valid saat digunakan. Indeks harus memiliki elemen sebanyak item variabel tipe dalam objek

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_12

Kelas Generik Standar

Kelas pustaka standar berikut mendukung generik berparameter. This list is non-exhaustive

Atribut Khusus dari
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
252 objek

Semua obat generik berparameter mengimplementasikan atribut read-only khusus

generikal. __origin__

Atribut ini menunjuk pada kelas generik non-parameter

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_13

generikal. __args__

Atribut ini adalah (mungkin dengan panjang 1) dari tipe generik yang diteruskan ke kelas generik asli

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_14

generikal. __parameters__

Atribut ini adalah tuple yang dihitung dengan malas (mungkin kosong) dari variabel tipe unik yang ditemukan di

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
306

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_15

Catatan

Objek

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_252 dengan parameter mungkin tidak benar
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
365 setelah substitusi karena dimaksudkan terutama untuk pemeriksaan tipe statis

generikal. __unpacked__

Boolean yang benar jika alias telah dibongkar menggunakan operator

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
00 (lihat )

Baru di versi 3. 11

Lihat juga

PEP 484 - Type Hints

Memperkenalkan kerangka kerja Python untuk anotasi tipe

PEP 585 - Ketik Generik Petunjuk Dalam Koleksi Standar

Memperkenalkan kemampuan untuk membuat parameter kelas perpustakaan standar secara native, asalkan mereka menerapkan metode kelas khusus

, Dan

Dokumentasi tentang cara mengimplementasikan kelas generik yang dapat diparameterisasi saat runtime dan dipahami oleh pemeriksa tipe statis

New in version 3. 9

Tipe Serikat

Objek gabungan memegang nilai operasi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
371 (bitwise atau) pada banyak. Jenis ini dimaksudkan terutama untuk. Ekspresi tipe gabungan memungkinkan sintaks petunjuk tipe yang lebih bersih dibandingkan dengan

X . Y . .

Mendefinisikan objek gabungan yang menampung tipe X, Y, dan seterusnya.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_373 berarti X atau Y. Ini setara dengan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_374. Misalnya, fungsi berikut mengharapkan argumen bertipe or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_16

union_object == lainnya

Union objects can be tested for equality with other union objects. Details

  • Serikat pekerja diratakan

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _17

  • Jenis redundan dihapus

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _18

  • Saat membandingkan serikat pekerja, pesanan diabaikan

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _19

  • Ini kompatibel dengan

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _20

  • Jenis opsional dapat dieja sebagai gabungan dengan

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _21

isinstance(obj, union_object)issubclass(obj, union_object)

Panggilan ke dan juga didukung dengan objek gabungan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_22

Namun, objek gabungan yang berisi tidak dapat digunakan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_23

Jenis yang terpapar pengguna untuk objek gabungan dapat diakses dari dan digunakan untuk pemeriksaan. Objek tidak dapat dibuat dari jenisnya

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_24

Catatan

Metode

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
383 untuk objek tipe ditambahkan untuk mendukung sintaks
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
373. Jika metaclass mengimplementasikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_383, Union dapat menimpanya

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
25

Lihat juga

PEP 604 – PEP mengusulkan sintaks

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
373 dan tipe Union

New in version 3. 10

Jenis Bawaan Lainnya

Penerjemah mendukung beberapa jenis objek lainnya. Sebagian besar hanya mendukung satu atau dua operasi

Modul

Satu-satunya operasi khusus pada modul adalah akses atribut.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
387, di mana m adalah modul dan nama mengakses nama yang didefinisikan dalam tabel simbol m. Atribut modul dapat ditugaskan ke. (Perhatikan bahwa pernyataan tersebut bukan, sebenarnya, operasi pada objek modul;
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
389 tidak memerlukan objek modul bernama foo untuk ada, melainkan membutuhkan definisi (eksternal) untuk modul bernama foo di suatu tempat. )

Atribut khusus dari setiap modul adalah. Ini adalah kamus yang berisi tabel simbol modul. Memodifikasi kamus ini sebenarnya akan mengubah tabel simbol modul, tetapi penugasan langsung ke atribut tidak dimungkinkan (Anda dapat menulis

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
392, yang mendefinisikan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
393 menjadi
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55, tetapi Anda tidak dapat menulis
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
395). Memodifikasi secara langsung tidak disarankan

Modul yang dibangun ke dalam juru bahasa ditulis seperti ini.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_397. Jika diambil dari file, ditulis sebagai
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
398

Kelas dan Contoh Kelas

Lihat dan untuk ini

Fungsi

Function objects are created by function definitions. Satu-satunya operasi pada objek fungsi adalah memanggilnya.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_399

Sebenarnya ada dua jenis objek fungsi. built-in functions and user-defined functions. Both support the same operation (to call the function), but the implementation is different, hence the different object types

Lihat untuk informasi lebih lanjut

Metode

Metode adalah fungsi yang dipanggil menggunakan notasi atribut. There are two flavors. built-in methods (such as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
400 on lists) and class instance methods. Built-in methods are described with the types that support them

If you access a method (a function defined in a class namespace) through an instance, you get a special object. a bound method (also called instance method) object. When called, it will add the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
401 argument to the argument list. Metode terikat memiliki dua atribut read-only khusus.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_402 adalah objek tempat metode beroperasi, dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
403 adalah fungsi yang mengimplementasikan metode. Memanggil
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
404 sama persis dengan menelepon
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
405

Seperti objek fungsi, objek metode terikat mendukung mendapatkan atribut arbitrer. Namun, karena atribut metode sebenarnya disimpan pada objek fungsi yang mendasarinya (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
406), menyetel atribut metode pada metode terikat tidak diperbolehkan. Mencoba untuk mengatur atribut pada hasil metode dimunculkan. Untuk menyetel atribut metode, Anda perlu menyetelnya secara eksplisit pada objek fungsi yang mendasarinya

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_26

Lihat untuk informasi lebih lanjut

Objek Kode

Objek kode digunakan oleh implementasi untuk mewakili kode Python yang dapat dieksekusi “pseudo-compiled” seperti badan fungsi. Mereka berbeda dari objek fungsi karena tidak berisi referensi ke lingkungan eksekusi globalnya. Code objects are returned by the built-in function and can be extracted from function objects through their

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
409 attribute. Lihat juga modul

Mengakses

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_409 memunculkan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
412 dengan argumen
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
413 dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
414

Objek kode dapat dieksekusi atau dievaluasi dengan meneruskannya (alih-alih string sumber) ke atau fungsi bawaan

Lihat untuk informasi lebih lanjut

Ketik Objek

Jenis objek mewakili berbagai jenis objek. Jenis objek diakses oleh fungsi bawaan. Tidak ada operasi khusus pada tipe. Modul standar menentukan nama untuk semua tipe bawaan standar

Jenis ditulis seperti ini.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_419

Objek Null

Objek ini dikembalikan oleh fungsi yang tidak mengembalikan nilai secara eksplisit. Ini tidak mendukung operasi khusus. Tepatnya ada satu objek nol, bernama

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 (nama bawaan).
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_421 menghasilkan singleton yang sama

Itu ditulis sebagai

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_31

Objek Ellipsis

Objek ini biasa digunakan dengan mengiris (lihat ). Ini tidak mendukung operasi khusus. Tepatnya ada satu objek elipsis, bernama (nama bawaan).

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
424 produces the singleton

Itu ditulis sebagai

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_423 atau
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
427

Objek NotImplemented

Objek ini dikembalikan dari perbandingan dan operasi biner ketika mereka diminta untuk beroperasi pada jenis yang tidak mereka dukung. Lihat untuk informasi lebih lanjut. Tepatnya ada satu objek

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_428.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_429 menghasilkan instance tunggal

Itu ditulis sebagai

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_428

Nilai Boolean

Nilai Boolean adalah dua objek konstan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56. Mereka digunakan untuk mewakili nilai kebenaran (walaupun nilai lain juga dapat dianggap salah atau benar). Dalam konteks numerik (misalnya ketika digunakan sebagai argumen untuk operator aritmatika), masing-masing berperilaku seperti bilangan bulat 0 dan 1. Fungsi bawaan dapat digunakan untuk mengonversi nilai apa pun menjadi Boolean, jika nilainya dapat diartikan sebagai nilai kebenaran (lihat bagian di atas)

Mereka masing-masing ditulis sebagai

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 dan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56

Objek Internal

Lihat untuk informasi ini. Ini menggambarkan objek bingkai tumpukan, objek traceback, dan objek irisan

Atribut Khusus

Implementasinya menambahkan beberapa atribut read-only khusus ke beberapa tipe objek, jika relevan. Beberapa di antaranya tidak dilaporkan oleh fungsi bawaan

objek. __dict__

Kamus atau objek pemetaan lain yang digunakan untuk menyimpan atribut objek (dapat ditulis).

contoh. __kelas__

Kelas tempat instance kelas berada

kelas. __basis__

Tuple kelas dasar dari objek kelas

definisi. __nama__

Nama kelas, fungsi, metode, deskriptor, atau instance generator

definisi. __qualname__

Kelas, fungsi, metode, deskriptor, atau instance generator

Baru di versi 3. 3

kelas. __mro__

Atribut ini adalah kumpulan kelas yang dipertimbangkan saat mencari kelas dasar selama resolusi metode

kelas. mro()

Metode ini dapat diganti oleh metaclass untuk menyesuaikan urutan resolusi metode untuk instansnya. Ini disebut pada instantiasi kelas, dan hasilnya disimpan di

kelas. __subkelas__()

Setiap kelas menyimpan daftar referensi lemah ke subkelas langsungnya. Metode ini mengembalikan daftar semua referensi yang masih hidup. Daftar ini dalam urutan definisi. Contoh

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_27

Batasan panjang konversi string bilangan bulat

CPython memiliki batas global untuk mengonversi antara dan untuk memitigasi penolakan serangan layanan. Batasan ini hanya berlaku untuk basis angka desimal atau non-pangkat-dua lainnya. Konversi heksadesimal, oktal, dan biner tidak terbatas. Batasnya dapat dikonfigurasi

Jenis dalam Python adalah angka panjang acak yang disimpan dalam bentuk biner (umumnya dikenal sebagai "bignum"). Tidak ada algoritma yang dapat mengubah string menjadi bilangan bulat biner atau bilangan bulat biner menjadi string dalam waktu linier, kecuali basisnya adalah kekuatan 2. Bahkan algoritma paling terkenal untuk basis 10 memiliki kompleksitas sub-kuadrat. Mengonversi nilai besar seperti

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_441 dapat memakan waktu lebih dari satu detik pada CPU yang cepat

Membatasi ukuran konversi menawarkan cara praktis untuk menghindari CVE-2020-10735

Batas diterapkan pada jumlah karakter digit dalam string input atau output ketika algoritma konversi non-linear akan dilibatkan. Underscores and the sign are not counted towards the limit

Ketika suatu operasi akan melebihi batas, a dinaikkan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_28

Batas default adalah 4300 digit seperti yang disediakan di. Batas terendah yang dapat dikonfigurasi adalah 640 digit seperti yang disediakan di

Verifikasi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_29

Baru di versi 3. 11

API yang terpengaruh

Pembatasan hanya berlaku untuk konversi yang berpotensi lambat antara dan atau

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _448 dengan basis default 10

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _449 untuk semua basis yang bukan pangkat 2

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _450

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _451

  • konversi string lainnya ke basis 10, misalnya

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    452,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    453, atau
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    454

Batasan tidak berlaku untuk fungsi dengan algoritme linier

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _449 dengan basis 2, 4, 8, 16, atau 32

  • Dan

  • , ,

  • untuk bilangan hex, oktal, dan biner

  • ke

  • ke

Konfigurasi batas

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit

  • , e. g.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _466 untuk menetapkan batas ke 640 atau
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    467 untuk menonaktifkan batasan

  • , e. g.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _469

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _470 berisi nilai atau. Jika env var dan opsi
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    _473 disetel, opsi
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    473 diutamakan. Nilai -1 menunjukkan bahwa keduanya tidak disetel, sehingga nilai
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    443 digunakan selama inisialisasi

Dari kode, Anda dapat memeriksa batas saat ini dan menetapkan batas baru menggunakan API ini

  • dan merupakan pengambil dan penyetel untuk batas lebar juru bahasa. Subinterpreter memiliki batasnya sendiri

Informasi tentang default dan minimum dapat ditemukan di

  • adalah batas default yang dikompilasi

  • adalah nilai terendah yang diterima untuk batas (selain 0 yang menonaktifkannya)

Baru di versi 3. 11

Peringatan

Menetapkan batas rendah dapat menyebabkan masalah. Meskipun jarang, ada kode yang berisi konstanta integer dalam desimal di sumbernya yang melebihi ambang batas minimum. Konsekuensi dari pengaturan batas adalah bahwa kode sumber Python yang berisi literal bilangan bulat desimal lebih lama dari batas akan mengalami kesalahan selama penguraian, biasanya pada waktu startup atau waktu impor atau bahkan pada waktu instalasi - kapan saja

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
482 yang diperbarui belum ada untuk . A workaround for source that contains such large constants is to convert them to
def bit_count(self):
    return bin(self).count("1")
12 hexadecimal form as it has no limit

Uji aplikasi Anda secara menyeluruh jika Anda menggunakan batas rendah. Pastikan pengujian Anda berjalan dengan batas yang ditetapkan lebih awal melalui lingkungan atau tanda sehingga itu berlaku selama startup dan bahkan selama langkah instalasi apa pun yang dapat memanggil Python untuk melakukan prekompilasi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
484 sumber ke
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
482 file

Konfigurasi yang disarankan

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_443 default diharapkan wajar untuk sebagian besar aplikasi. Jika aplikasi Anda memerlukan batas yang berbeda, setel dari titik masuk utama Anda menggunakan kode agnostik versi Python karena API ini ditambahkan dalam rilis patch keamanan di versi sebelum 3. 11

Example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_30

Jika Anda perlu menonaktifkannya sepenuhnya, setel ke

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42

Catatan kaki

Informasi tambahan tentang metode khusus ini dapat ditemukan di Manual Referensi Python ()

Akibatnya, daftar

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
_488 dianggap sama dengan
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
489, dan demikian pula untuk tupel

Mereka harus memilikinya karena parser tidak dapat mengetahui jenis operan

4(,,,)

Karakter huruf kapital adalah karakter dengan properti kategori umum menjadi salah satu dari "Lu" (Huruf, huruf besar), "Ll" (Huruf, huruf kecil), atau "Lt" (Huruf, huruf judul)

5(,)

Untuk memformat tuple saja, Anda harus menyediakan tuple tunggal yang satu-satunya elemennya adalah tuple yang akan diformat

Bagaimana cara mengubah string menjadi array biner dengan Python?

Untuk mengonversi string ke biner, pertama-tama kita menambahkan nilai ASCII individual string ke daftar ( l ) menggunakan fungsi ord(_string). This function gives the ASCII value of the string (i.e., ord(H) = 72 , ord(e) = 101). Then, from the list of ASCII values we can convert them to binary using bin(_integer) .

How do you convert a string to a byte array in Python?

We can use the built-in Bytes class in Python to convert a string to bytes. cukup teruskan string sebagai input pertama dari konstruktor kelas Bytes dan kemudian teruskan penyandian sebagai argumen kedua . Mencetak objek menunjukkan representasi tekstual yang mudah digunakan, tetapi data yang terkandung di dalamnya dalam byte.

Bagaimana cara mengonversi string menjadi array array dengan Python?

Anda melakukannya dengan menggunakan fungsi list() bawaan dan meneruskan string yang diberikan sebagai argumen ke fungsi . Teks " Belajar Python. " memiliki spasi putih di depan dan di belakang, spasi putih di antara kata "Belajar" dan "Python", dan spasi putih di antara kata "Python" dan tanda seru.

Bagaimana cara mengubah string biner menjadi bilangan bulat dengan Python?

Dalam hal ini, kita menggunakan fungsi bawaan yang disebut int . Fungsi ini mengambil string yang ingin kita ubah sebagai argumen pertama dan basis angka sebagai argumen kedua. Karena di sini kita berurusan dengan bilangan biner, maka basisnya adalah 2. Metode ini kemudian mengembalikan nilai integer dari string biner.