Fraksi fraksi apa saja yang dapat diperoleh dari penyulingan minyak mentah?

Fraksi fraksi apa saja yang dapat diperoleh dari penyulingan minyak mentah?

Minyak yang baru keluar dari pengeboran masih berupa minyak mentah yang belum dapat digunakan. Untuk dapat dimanfaatkan sebagai bahan bakar dan keperluan lain, minyak mentah perlu diolah di kilang-kilang minyak melalui penyulingan (distilasi) bertingkat dengan teknik fraksionasi. Bagaimanakah proses pengolahan minyak bumi?

A. Pengolahan Minyak Bumi

Proses distilasi bertingkat merupakan cara untuk memisahkan komponen-komponen penyusun minyak bumi berdasarkan perbedaan titik didihnya melalui kolom-kolom berfraksi dengan pelat-pelat dan sejumlah sungkup gelembung udara.

Pengolahan minyak bumi dimulai dengan memanaskan minyak mentah pada suhu sekitar 400⁰ C, kemudian dialirkan ke dalam menara fraksionasi. Komponen yang memiliki titik didih paling rendah akan menguap terlebih dulu dan naik ke bagian atas melalui sungkup-sungkup gelembung udara.

Sementara komponen yang memiliki titik didih lebih tinggi akan tetap berupa cairan dan turun ke bawah. Begitu seterusnya, hingga secara bertahap semua komponen dapat dipisahkan dari campuran minyak mentah. Komponen yang mencapai puncak menara adalah komponen yang pada suhu kamar berwujud gas. Komponen gas tersebut dinamakan gas petroleum. Melalui kompresi dan pendinginan, gas petroleum dicairkan hingga diperoleh LPG (Liquified Petroleum Gas). Hasil fraksionasi itu menyisakan residu yang disebut aspal berwarna hitam pekat.

Hasil fraksionasi minyak bumi digunakan untuk berbagai keperluan seperti dapat dilihat pada tabel berikut ini.

Fraksi fraksi apa saja yang dapat diperoleh dari penyulingan minyak mentah?

Masing-masing fraksi minyak bumi yang telah dipisahkan satu sama lain segera mengalami proses desulfurisasi (penghilangan belerang). Senyawa-senyawa belerang di dalam minyak bumi perlu dikurangi, sebab belerang membuat bau tidak enak pada minyak bumi. Minyak bumi yang kadar belerangnya tinggi jika dibakar akan menghasilkan gas SO2 sehingga meningkatkan pencemaran udara.

B. Mutu Bensin

Fraksi terpenting dari minyak bumi yang paling banyak digunakan dalam kehidupan sehari-hari adalah bensin. Bensin digunakan sebagai bahan bakar kendaraan bermotor. Sekitar 10% produk distilasi minyak mentah adalah fraksi bensin dengan rantai tidak bercabang. Bensin tersusun dari komponen alkana berupa n-heptana dan isooktana. Berbagai jenis bensin beredar di pasaran, diantaranya premium, premix, dan pertamax. Harga tiap-tiap jenis bensin di pasaran berbeda karena terdapat perbedaan mutu.

Mutu bensin dinyatakan dengan bilangan oktan. Bilangan oktan adalah perbandingan antara nilai ketukan bensin terhadap nilai ketukan dari campuran hidrokarbon standar. Campuran hidrokarbon yang dipakai sebagai standar bilangan oktan adalah n-heptana dan 2,2,4-trimetilpentana (isooktana). Jika bensin mengandung campuran 87% isooktana dan 13% n-heptana, maka bilangan oktan bensin tersebut ditetapkan sebesar 87 satuan.

Makin tinggi harga bilangan oktan suatu bensin, berarti bensin tersebut makin bagus atau makin efisien dalam menghasilkan energi. Bensin premium mutunya lebih rendah dibandingkan pertamax. Bensin premium memiliki bilangan oktan 80 – 84, sedangkan pertamax memiliki bilangan oktan 92 – 94. Selain itu, di pasaran dikenal pula pertamax plus yang memiliki bilangan oktan 98.

Bila bilangan oktan bensin rendah, pada mesin kendaraan akan timbul suara ketukan (knocking) sehingga mesin mudah panas dan rusak. Untuk meningkatkan bilangan oktan pada bensin ditambahkan TEL (Tetra Etyl Lead) dengan rumus kimia Pb(C2H5)4. TEL dikenal sebagai anti knocking. Penggunaan TEL ini ternyata menimbulkan masalah yaitu timbulnya pencemaran udara oleh partikulat Pb. Agar PbO hasil pembakaran tidak mengendap dalam mesin dan keluar melalui knalpot, ditambahkan lagi senyawa 1,2-dibromoetana sehingga yang keluar dari hasil pembakaran adalah PbBr2 yang mudah menguap.

Proses penambahan TEL pada bensin premium dapat menimbulkan pencemaran yang diakibatkan oleh Pb di udara, air, maupun tanah. Bila termakan oleh kita akan menyebabkan terganggunya pembentukan sel darah merah, merusak otak, dan menghalangi proses metabolisme. Sekarang penggunaan TEL sebagai zat aditif pada bensin tidak diperbolehkan lagi dan digantikan oleh senyawa lain yang lebih ramah lingkungan, yaitu MTBE (Methyl Tertiary Buthyl Ether). Contoh bensin yang menggunakan MTBE adalah pertamax dan pertamax plus.

Kita telah menyimak Fraksi-fraksi Minyak Bumi. Tersedia juga pelatihan dan sertifikasi Oil and Gas management di OMC by Synergy Solusi Indonesia Member of Proxsis. Selain Pelatihan Oil and Gas, ada juga topik pelatihan yang alinnya, klik disini untuk cek agenda pelatihan kami. Atau, gunakan fitur chat dibawah untuk terhubung dengan narahubung kami.

Sumber: http://rumus-kimia.com/

Proses Pengolahan Minyak Bumi – Tahukah kalian bagaimana proses pengolahan bensin atau minyak bumi lainnya yang sering kita gunakan sehari-hari? Minyak bumi sebenarnya adalah campuran cair yang terdiri dari jutaan senyawa. Sebagian besar adalah senyawa hidrokarbon. Senyawa ini terbentuk selama dekomposisi fosil tumbuhan dan hewan.

Minyak bumi merupakan bahan baku pertambangan yang memegang peranan sangat penting dalam kehidupan manusia, terutama sebagai sumber energi. Seperti bahan bakar dari LPG, bensin, solar hingga minyak tanah, bahan seperti lilin parafin dan aspal.

Berbagai reagen kimia yang dibutuhkan untuk membuat plastik, karet sintetis, deterjen, obat-obatan, dll terbuat dari minyak bumi. lalu bagaimana proses pengolahan minyak bumi tersebut? Berikut ini penjelasan tentang minyak mentah, dimulai dari asal usul minyak mentah, komposisinya, dan proses pengolahannya:

Mengenal Apa Itu Minyak Bumi?

Minyak bumi adalah campuran kompleks yang terutama terdiri dari (sekitar 90% hingga 97%) senyawa hidrokarbon. Hidrokarbon yang terkandung dalam minyak mentah terutama adalah alkana, dan sisanya adalah sikloalkana, alkena, alkuna, dan senyawa aromatik. Komponen kecil lainnya selain hidrokarbon adalah senyawa karbon yang mengandung oksigen, belerang, atau nitrogen. Gas alam terutama terdiri dari alkana kadar rendah (C1 hingga C4) yang komponen utamanya adalah metana. Selain alkana, ada gas lain seperti CO2, O2, N2, H2S, atau sejumlah kecil gas langka seperti helium.

Minyak bumi terbentuk dari pelapukan puing-puing berbagai jenis organisme seperti tumbuhan, hewan dan mikroorganisme, dan telah terkubur dengan lumpur di dasar laut selama jutaan tahun. Lumpur berubah menjadi berbagai batuan sedimen berpori, tetapi puing-puing organisme bergerak ke daerah bertekanan rendah dan terkumpul di batuan kedap air di daerah perangkap. Gas alam, minyak dan air dihasilkan sebagai deposit minyak. Gas alam berada di rongga atas dan minyak cair mengapung di atas reservoir. Klasifikasi adalah sebagai berikut ini:

  1. Mikroorganisme yang mengandung lumpur
  2. Berjuta-juta tahun dirawat
  3. Sedimen dari dasar laut
  4. Menghasilkan polusi minyak dan gas
  5. Tidak ada Minyak bumi dan gas alam yang sering disebut sebagai bahan bakar fosil karena minyak bumi berasal dari puing-puing organisme hidup, yang terakumulasi sebagai deposit minyak bumi di batuan permeabel
  6. Bahan bakar fosil diklasifikasikan sebagai sumber daya alam yang tidak terbarukan. Pasalnya, proses pembentukan minyak mentah sangat lama

Untuk mengekstrak minyak, perlu melakukan proses pengeboran. Minyak mentah yang ditemukan biasanya dicampur dengan gas alam. Minyak mentah adalah minyak yang dipisahkan dari gas alam berupa cairan berwarna hitam pekat yang berbau. Minyak mentah ini tidak dapat digunakan secara langsung dan harus dimurnikan dengan destilasi bertingkat.

Prinsip distilasi ini adalah memisahkan komponen-komponen suatu campuran berdasarkan perbedaan titik didih dan memperoleh sekelompok komponen dalam rentang didih tertentu yang disebut fraksi. Lebih jelasnya, berikut ini proses pengolahan minyak bumi:

Proses Pengolahan Minyak Bumi

Proses mengubah fosil hewan menjadi minyak melewati beberapa tahapan yang sangat panjang. Pertama, para ahli melakukan eksplorasi. Kegiatan ini bertujuan untuk memperoleh informasi kondisi geologi guna menemukan dan memperoleh perkiraan cadangan minyak bumi. Umumnya, mereka mengambil bidikan udara untuk membuat peta topografi. Setelah menentukan daerah yang akan disurvei, para ahli kebumian (geolog) mencari sampel batuan dan formasi batuan yang muncul dari permukaan karang dan tebing untuk penelitian laboratorium.

Selain itu, kegiatan dilanjutkan dengan melakukan survei geofisika. Mereka melakukan ini dengan menyebabkan gempa bumi kecil dan getaran di bawah tanah (aktivitas seismik). Gelombang berosilasi dari ledakan ini turun dan memantul dari permukaan bumi. Dengan cara ini, situs yang mengandung minyak dapat dievaluasi secara ilmiah. Daerah bawah tanah yang tidak berpori disebut antiklin atau cekungan.

Daerah cekungan ini terdiri dari beberapa lapisan, lapisan bawah berisi air, lapisan atas berisi minyak, dan di atas minyak rongga berisi gas alam. Jika cekungan tersebut mengandung minyak dalam jumlah besar, maka akan dilakukan penggalian untuk mengidentifikasi lokasi yang diperkirakan mengandung minyak, kemudian langkah selanjutnya adalah eksploitasi.

Eksploitasi adalah rangkaian kegiatan yang berkaitan dengan produksi minyak. Kegiatan ini meliputi pengeboran dan penyelesaian sumur, transportasi untuk pemisahan dan pemurnian minyak, penyimpanan dan pembangunan fasilitas pengolahan. Sumur pemboran menghasilkan minyak mentah yang perlu diolah kembali, selain minyak mentah juga menghasilkan air dan polutan lainnya.

Zat selain minyak mentah dipisahkan sebelum diproses lebih lanjut. Komponen utama minyak mentah hasil galian adalah campuran dari berbagai senyawa hidrokarbon. Senyawa lain seperti belerang, nitrogen dan oksigen hadir dalam jumlah kecil. Berikut ini daftar komponen yang menunjukkan persentase senyawa yang terkandung dalam minyak mentah (crude oil).

Kelompok Unsur:

  • Karbon 84%
  • Hidrogen 14%
  • Sulfur Antara 1% Sampai 3%
  • Nitrogen kurang dari 1%
  • Oksigen Kurang dari 1%
  • Logam Kurang dari 1%
  • Garam kurang dari 1%

Campuran hidrokarbon dalam minyak mentah terdiri dari berbagai senyawa hidrokarbon seperti alkana, senyawa aromatik, naftalena, alkena dan alkuna. Senyawa ini berbeda dalam panjang rantai dan titik didih. Semakin panjang rantai karbon, semakin tinggi titik didihnya.

Agar dapat digunakan untuk berbagai keperluan, komponen minyak mentah harus dipisahkan menurut titik didihnya. Proses yang digunakan adalah distilasi bertingkat. Menurut Grameds, apakah ada proses pemisahan selain destilasi?

Minyak mentah yang diekstraksi dari sumur minyak pada semua tahap pemrosesan minyak mentah tidak dapat digunakan atau digunakan secara langsung untuk berbagai keperluan. Minyak mentah masih merupakan campuran dari berbagai senyawa hidrokarbon, terutama asam dan basa mentah yang ditambahkan karena merupakan komponen utama hidrokarbon alifatik mulai dari rantai C sederhana atau pendek hingga rantai C banyak atau panjang dan senyawa non-hidrokarbon.

Minyak mentah, yang berbentuk cair pada suhu dan tekanan normal, berkisar dari titik didih yang sangat rendah hingga sangat tinggi untuk senyawa hidrokarbon. Titik didih hidrokarbon (alkana) meningkat dengan meningkatnya jumlah atom karbon dalam molekul. Karena perbedaan titik didih komponen minyak bumi, minyak mentah dipisahkan menjadi beberapa fraksi dalam proses distilasi bertingkat.

Destilasi bertingkat adalah suatu proses penyulingan (distilasi) dimana digunakan langkah-langkah pendinginan atau fraksi-fraksi sesuai dengan kurva didih campuran yang diinginkan, sehingga terjadi proses kondensasi pada beberapa tahapan/fraksi. Metode ini disebut pengurutan.

Minyak mentah tidak dapat dipisahkan menjadi komponen murni (senyawa individu). Hal ini tidak mungkin karena ketidakpraktisan dan fakta bahwa minyak bumi mengandung banyak senyawa hidrokarbon serta senyawa non-hidrokarbon. Dalam hal ini, senyawa hidrokarbon memiliki isomer dengan titik didih yang berdekatan. Oleh karena itu, minyak mentah dipisahkan dengan proses distilasi bertingkat. Fraksi yang diperoleh dari fraksi minyak bumi merupakan campuran hidrokarbon yang mendidih pada temperatur tertentu. Berikut ini proses pengolahan minyak bumi, dari tahap pertama sampai minyak mentah siap digunakan:

Tahap pertama adalah proses distilasi bertingkat, yaitu dengan memisahkan minyak mentah menjadi fraksi-fraksinya berdasarkan titik didih masing-masing fraksi. Komponen titik didih tinggi tetap cair dan jatuh ke dasar, sedangkan komponen titik didih rendah menguap dan naik melalui bejana penahanan yang disebut menara gelembung.

Semakin tinggi suhu, semakin rendah suhu menara distilasi fraksional. Akibatnya, komponen titik didih tinggi mengembun dan memisahkan, dan komponen titik didih rendah naik dan kembali ke keadaan semula. Misalnya, pastikan bahwa komponen yang mencapai puncak menara adalah komponen gas pada suhu kamar. Hasil sortasi oli adalah sebagai berikut:

Fraksi ini menghasilkan fraksi yang paling ringan, gas. Minyak mentah dengan titik didih di bawah 30°C berarti berwujud gas pada suhu kamar. Gas pada tahap ini adalah bentuk gas yang awalnya larut dalam minyak mentah, sedangkan bentuk gas yang tidak larut akan dipisahkan saat proses pengeboran berlangsung. Gas yang dihasilkan pada tahap ini adalah bentuk unsur Liquid Natural Gas (LNG) yang mengandung unsur utama propana (C3H8) dan butana (C4H10), dan Liquid Petroleum Gas (LPG) yang mengandung metana (CH4) dan etana (C2H6).

2. Fraksi Kedua

Pada fraksi ini dihasilkan petroleum eter. Perlu Grameds ketahui bahwa minyak bumi pada titik didih lebih kecil 90 oC, masih berbentuk uap, dan akan masuk ke bagian pendinginan dengan suhu 30 oC – 90 oC. Pada tahap ini, bahan petroleum eter (bensin ringan) kemudian akan mengalami pencairan dan keluar ke bagian penampungan di petroleum eter. Petroleum eter adalah campuran alkana dengan rantai C5H12 hingga C6H14.

3. Fraksi Ketiga

Fraksi ini menghasilkan bensin (gasoline). Minyak mentah dengan titik didih kurang dari 175 oC masih berupa uap dan masuk ke kolom pendingin pada suhu antara 90 oC sampai 175 oC. Dengan cara ini, bensin meleleh dan bocor ke tangki bensin. Bensin adalah campuran alkana dan rantai C6H14-C9H20.

4. Fraksi Keempat

Fraksi ini menghasilkan nafta. Minyak mentah dengan titik didih kurang dari 200 oC masih berupa uap dan masuk ke kolom pendingin pada suhu antara 175 oC sampai 200 oC. Rute ini mencairkan nafta (nafta berat) ke dalam reservoir nafta. Nafta adalah campuran alkana dan rantai C9H20-C12H26.

5. Fraksi Kelima

Fraksi ini menghasilkan minyak tanah (kerosene). Minyak mentah dengan titik didih kurang dari 275 oC masih berupa uap dan masuk ke kolom pendingin pada suhu antara 175 oC sampai 275 oC. Pada jalur ini, minyak tanah (kerosene) meleleh dan bocor ke reservoir minyak tanah. Minyak tanah (kerosene) merupakan campuran alkana dan rantai C12H26–C15H32.

6. Fraksi Keenam

Fraksi ini menghasilkan minyak ringan (light oil). Minyak mentah dengan titik didih kurang dari 375 oC masih berupa uap dan masuk ke kolom pendingin pada suhu antara 250 oC dan 375 oC. Dengan cara ini, minyak ringan (light oil) meleleh dan masuk ke reservoir minyak ringan (light oil). Minyak solar adalah campuran rantai alkana dan C15H32-C16H34.

7. Fraksi Ketujuh

Pecahan ini memberikan residu. Minyak mentah dipanaskan hingga suhu tinggi melebihi 375 ° C, yang menyebabkan penguapan. Rute ini menghasilkan residu yang tidak mudah menguap dan menguap. Residu non-volatil berasal dari minyak non-volatil seperti aspal dan batubara minyak bumi. Residu evaporasi berasal dari minyak evaporasi dan masuk ke kolom pendingin pada suhu 375°C. Minyak pelumas (C16H34–C20H42) digunakan untuk melumasi mesin, parafin (C21H44–C24H50) digunakan untuk membuat lilin, dan aspal (rantai C lebih besar dari C36H74) digunakan untuk melapisi bahan bakar dan jalan.

2. Proses Pengolahan Minyak Bumi Tahap Kedua

Pengolahan tahap kedua merupakan pengolahan lebih lanjut dari hasil unit pengolahan tahap pertama. Pengolahan pada tahap ini bertujuan untuk mengekstraksi dan memproduksi berbagai jenis Bahan Bakar Minyak (BBM) dan Non Bahan Bakar Minyak (non BBM) dalam jumlah besar dan dengan kualitas yang lebih tinggi sesuai dengan permintaan konsumen dan pasar.

Pada tahap perlakuan kedua, terjadi perubahan struktur kimia. Dapat berupa dekomposisi molekul (proses cracking), fusi molekul (proses polimerisasi, alkilasi), atau perubahan struktur molekul (proses modifikasi). Pemrosesan lebih lanjut dapat berupa proses seperti berikut ini:

a. Konversi Struktur Kimia

Dalam proses ini, senyawa hidrokarbon diubah menjadi senyawa hidrokarbon lain melalui proses kimia seperti berikut ini:

Cracking : Dalam proses ini, molekul hidrokarbon besar dipecah menjadi molekul hidrokarbon yang lebih kecil, menghasilkan titik didih dan stabilitas yang rendah. Proses ini dapat dijalankan sebagai berikut:

  • Pirolisis adalah proses perengkahan yang hanya menggunakan suhu dan tekanan tinggi
  • Dekomposisi katalitik, yaitu proses dekomposisi yang menggunakan panas dan katalis untuk mengubah destilasi dengan titik didih tinggi menjadi bensin dan kerosin. Butana dan gas lainnya juga diproduksi dalam proses ini
  • Dekomposisi oleh hidrogen (dekomposisi hidrogenasi). Artinya, proses perengkahan yang merupakan kombinasi perengkahan termal dan perengkahan katalitik dengan “menginjeksikan” hidrogen ke dalam molekul-molekul fraksi hidrokarbon tak jenuh

Dengan cara ini LPG, nafta, kerosin, avtur dan solar dapat dibuat dari minyak bumi. Jumlah yang diperoleh lebih tinggi daripada perengkahan termal atau perengkahan katalitik saja dan kualitasnya sangat baik. Selain itu, jumlah residu berkurang.

Alkilasi : Proses ikatan kimia dua hidrokarbon isoparafin untuk membentuk alkil oktan tinggi. Alkylate ini dapat digunakan sebagai bensin atau avgas.

Polimerisasi : Ikatan dua atau lebih molekul menjadi satu molekul yang disebut polimer. Tujuan dari polimerisasi ini adalah untuk mengikat molekul hidrokarbon berbentuk gas (etilen, propena) dengan senyawa nafta ringan.

Modifikasi : Proses pirolisis nafta secara perlahan untuk mendapatkan produk yang lebih mudah menguap seperti olefin dengan oktan yang lebih tinggi. Selain itu juga dapat berupa konversi katalitik dari komponen nafta untuk menghasilkan senyawa aromatik dengan oktan yang lebih tinggi.

Isomerisasi : Proses ini mengubah susunan dasar atom dalam molekul tanpa menambah atau menghilangkan bagian aslinya. Hidrokarbon linier diubah menjadi hidrokarbon garis cabang oktan tinggi. Proses ini memungkinkan konversi n-butana menjadi isobutana. Isobutana dapat digunakan sebagai bahan baku untuk proses alkilasi.

b. Metode Ekstraksi

Pada metode ini pemisahan terjadi karena kelarutan fraksi minyak dalam pelarut seperti SO2 dan furfural berbeda. Metode ini menghasilkan sejumlah besar produk dan kualitas yang sangat baik. Metode destilasi murni.

c. Proses Kristalisasi

Dalam proses ini, fraksi dipisahkan berdasarkan titik leleh yang berbeda. Lilin dan oli filter dibuat dari bahan bakar diesel yang kaya parafin dengan pendinginan, pengepresan, dan penyaringan. Produk lain tersedia sebagai produk tambahan di hampir setiap proses manufaktur. Produk-produk tersebut dapat digunakan sebagai bahan dasar petrokimia yang dibutuhkan untuk produksi bahan plastik, bahan dasar kosmetik, penolak serangga dan berbagai produk petrokimia lainnya.

d. Pemurnian (perlakuan) Produk

Produk minyak yang diperoleh pada tahap pertama dari perawatan dan perawatan selanjutnya sering terkontaminasi dengan zat berbahaya seperti senyawa kaustik dan bau yang tidak sedap. Kontaminan ini harus dibersihkan, misalnya menggunakan soda api, tanah liat, atau proses hidrogenasi.

Nah, itulah penjelasan tentang proses pengolahan minyak bumi, dari asal usul dan unsur perubahannya hingga bisa kita gunakan untuk keperluan sehari-hari. Minyak bumi adalah salah satu kekayaan alam yang dimiliki Indonesia, namun sayangnya masih banyak pula yang dikuasai asing. Itulah sebabnya hal ini menjadi menarik untuk dipelajari. Grameds bisa mencari referensi tentang minyak bumi lewat koleksi buku Gramedis di www.gramedia.com atau www.ebooksgrameida.com, selamat belajar. #SahabatTanpabatas.

BACA JUGA:

  • Custom log
  • Akses ke ribuan buku dari penerbit berkualitas
  • Kemudahan dalam mengakses dan mengontrol perpustakaan Anda
  • Tersedia dalam platform Android dan IOS
  • Tersedia fitur admin dashboard untuk melihat laporan analisis
  • Laporan statistik lengkap
  • Aplikasi aman, praktis, dan efisien